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Appendix C 
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Abstract 
 

Replacement sensor models are used to replace sensor-specific original (“rigorous” or 
“physical”) sensor models.  They have become increasingly more important and more 
available in today’s remote sensing and image exploitation communities.  This report 
provides a general description of replacement sensor models: their general use, benefits, 
and limitations.  It also describes a recent replacement sensor model, RSM, which is 
more flexible than its predecessors and eliminates their major limitations.  In particular, 
RSM’s use, generation, and performance are thoroughly detailed.  In addition, 
geopositioning  based on optimal estimation techniques and multiple images is discussed.  
Solution algorithms are provided, applicable to both the RSM and the original sensor 
models it replaces.  Other replacement sensor models can not support these optimal 
estimation techniques, required not only for optimal position estimates, but for reliable 
accuracy estimates as well.  Similarly, RSM also supports the optimal adjustment of 
image support data (triangulation), where other replacement sensor models can not. 



BAE Systems              RSM TRE Descriptions              Appendix C             July 23, 2004 3

 
Table of Contents 

 
Section          page 
 
1.0 Introduction to replacement sensor models     5  

1.1 replacement sensor model examples     5 
1.2 RSM         6 

 1.3 Limitations of replacement sensor models    7 
  1.3.1 Substitute sensor model limitations    7 
  1.3.2 Replacement sensor model limitations    9 
  1.3.3 RSM limitations       11 
2.0 Sensor model functionality       11 
 2.1 Original sensor model major components    12 
 2.2 RSM major components       13 
 2.3 Incomplete sensor models       14  
3.0 RSM detailed form        15 

3.1 Adjustable ground-to-image function     16 
3.1.1 Ground-to-image function polynomial    17 
3.1.2 Ground-to-image function grid     19 
3.1.3 Adjustments       24 

3.2 Error covariance        26 
3.2.1 Direct error covariance      26 
3.2.2 Indirect error covariance     28 

3.2.2.1 Detailed description     28 
3.2.2.2 Optional classification of errors   30  

 3.2.3 Practical considerations      33 
3.3 Time and illumination models      34 
3.4 Support data format       34 

4.0 Geopositioning with RSM       35 
4.1 Optimal algorithms       36 

4.1.1 Geopositioning       36 
4.1.2 Multi-ground point geopositioning and triangulation  42 
4.1.3 Optimal versus non-optimal solution comparisons   43 

4.2 Adjustable image-to-ground function     51 
5.0 RSM generation         52 

5.1 Ground-to-image function      52 
5.1.1 Ground-to-image function polynomial    52 

5.1.1.1 Linear solution for numerator-only coefficients 53 
5.1.1.2 Quasi-linear solution for coefficients (Method 1) 55 
5.1.1.3 Quasi-linear solution for coefficients (Method 2) 58 
5.1.1.4 Recommendations      60 

5.1.2 Ground-to-image function grid     60 
5.2 Adjustable parameters and error covariance    60 
 5.2.1 Error covariance generation     60 
 5.2.2 Adjustment vector selection     64  



BAE Systems              RSM TRE Descriptions              Appendix C             July 23, 2004 4

5.3 Time and illumination models      65 
6.0 RSM development status and performance summary    66 

6.1 Development status       66 
6.2 Performance summary       66 
 6.2.1 RSM representation error     67 

 6.2.2 NIMA-sponsored RSM commercial imagery study  68 
  6.2.2.1 SPOT results      68 
  6.2.2.2 Sensitivity to adjustment magnitude   71 
  6.2.2.3 SPOT-IKONOS results    72 

7.0 Bibliography         74 
 
 
Tables 
 
Table 1.  Possible approaches to support data error covariance    33 
representation by increasing fidelity 
Table 2.  RSM support data groups summary     35 
Table 3.  Sensor support data error characteristics for Pass 1 images  45 
Table 4.  Solution performance       48 
Table 5.   SPOT RSM - original solution maximum normalized   70 
differences (%) 
Table 6.   SPOT-IKONOS RSM - original sensor model average    73 
differences (meters) 
Table 7.   SPOT-IKONOS original sensor model average error    73 
propagation results (meters) 
 
 
Figures 
 
Figure 1.  Fit grid for true replacement ground-to-image function   8  
Figure 2.  Fit points for the ground-to-image function of a substitute   9 
sensor model 
Figure 3.  Horizontal discrepancy between the original and substitute   9 
sensor models 
Figure 4.  RSM adjustable ground-to-image function     16 
Figure 5.  Interpolation along the Z -direction      20 
Figure 6.  Interpolation within a Z -plane       21 
Figure 7.  Piece-wise linear correlation function example    30 
Figure 8.  Optimal stereo solution        37 
Figure 9.  Optimal multi-image solution       37 
Figure 10.  Optimal Geopositioning Solution Algorithm     38 
Figure 11.  Imaging geometry        44 
Figure 12.  Image footprints         45 
Figure 13.  The effects of RSM representation error on vertical    68 
solution accuracy 



BAE Systems              RSM TRE Descriptions              Appendix C             July 23, 2004 5

1.0  Introduction to replacement sensor models 
 
A replacement sensor model is a general sensor model that replaces the original, or 
rigorous, sensor model associated with a specific sensor. It typically represents the 
rigorous sensor model’s ground-to-image relationship as a rational polynomial, mapping 
a three-dimensional ground point x  to a two-dimensional image point i . 
 
There are numerous advantages associated with a replacement sensor model.  In 
particular, evaluation of its ground-to-image relationship is typically faster than for its 
rigorous sensor model counterpart, making it more suitable for real-time 
photogrammetric operations.   Also, a replacement sensor model hides various details 
associated with a specific sensor that are available in the sensor’s rigorous (physical) 
sensor model.  This supports proprietary sensor development.  The sensor image 
provider populates the image support data relative to the replacement sensor model, and 
the user community requires only the replacement sensor model, along with the imagery 
and its support data.  Also, a replacement sensor model can be applicable to more than 
one sensor.  This commonality reduces sensor model development and maintenance 
costs to the user.  In particular, if a sensor’s rigorous sensor model is upgraded, this 
change is transparent to the user. 
 
 1.1 replacement sensor model examples 
 

The concept of a replacement sensor model is not new, and in fact, replacement sensor 
models are currently utilized operationally by various commercial space-borne image 
providers.  For example, Space Imaging utilizes the Rational Polynomial Coefficient 
(RPC) model for the Ikonos sensor.  RPC is a particular example of a rational function 
model (RFM), and models the ground-to-image relationship as a third order, rational, 
ground-to-image polynomial.  Another replacement sensor model is the Universal Sensor 
Model (USM), developed at BAE Systems.  It provides a ground-to-image relationship as 
a variable order, rational, ground-to-image polynomial, although it is usually generated as 
a numerator-only polynomial.  It also allows for optional correction tables and 
representation of the ground-to-image relationship across an image with multiple 
polynomials.    
 
Descriptions of various replacement sensor models, including discussions of their history, 
performance, and limitations, are provided in (OGC, 1999), (Dowman and Dolloff, 
2000), and (Tau and Hu, December 2001).    However, these replacement sensor models 
typically supply only a ground-to-image relationship.  Adjustability is typically not 
supplied, and a rigorous error propagation capability is never supplied.  Without rigorous 
error propagation, neither optimal geopositioning solutions, including reliable accuracy 
estimates, nor optimal image support data adjustments (triangulation) are possible 
(Dowman and Dolloff, 2000).  In addition, many of these replacement sensor models 
only work for a general class of sensors, such as commercial space-borne imagery.  They 
are not flexible enough to work for a larger class of sensors, and thus can not form a basis 
for a universal support data format standard. 
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A more recent replacement sensor model, RSM, has been developed that addresses these 
various limitations*.  Due to its adjustability, rigorous error propagation capabilities, and 
flexibility, RSM is a significant extension of previous replacement sensor models.  
However, it does build upon their original concept, including the use of a replacement for 
the original (or rigorous) sensor model’s ground-to-image relationship.   
 
As part of this introduction, an overview of RSM is provided next, followed by a 
discussion on the limitations of all replacement sensors models.  (A further introductory 
discussion on replacement sensor models can also be found in section Y.Y of this 
manual.)  Following the introduction, RSM is then described in detail, including its use 
and generation.  Because RSM contains the functionality of virtually all other current 
replacement sensor models as a subset, its description provides a general functional 
description of others as well. 
 

 1.2  RSM 
 
The Replacement Sensor Model (RSM) is a general sensor model that is designed to 
replace the full functionality of virtually any imaging sensor model.  It includes an 
adjustable ground-to-image function and an error covariance that provides for rigorous 
error propagation.   
 
RSM image support data for a specific sensor and specific image is generated by any 
suitably configured “up-stream” process.  Inputs to this process are the original sensor 
model’s image support data, and outputs are the RSM image support data.  Internally, the 
process contains and utilizes both the original sensor model and the RSM.  
 
Subsequently, the only resident sensor model required by “down-stream” users is the 
RSM.  Furthermore, in order to exploit any image from any sensor, only the 
corresponding image and RSM image support data are required as inputs.  This capability 
affords significant user development and maintenance cost savings, as well as provides 
for a potential standard for all image support data.   It also hides details of the original 
sensor model and its image support data, potentially important to sensor model 
developers and others. 
 
 
 
 
*The author of this section and designer of RSM, John Dolloff, would like to thank Professor E.M. Mikhail 
of Purdue University for all the support and expertise he graciously provided during the development and 
testing of RSM.  He would also like to thank Dr. Charles Taylor, of BAE Systems, for his significant 
contributions in the development and testing of RSM, and Mr. Gregg Kunkel, of BAE Systems, for his 
work on polynomial ground-to-image functions.  Professor Mikhail, Dr. Taylor, Mr. Kunkel, as well as Ms. 
Michelle Iiyama, of BAE Systems, and Professor J.C. McGlone, of Carnegie Mellon University, also 
provided insightful critiques of various drafts of this section.   Finally, the author would like to thank Mr. 
Thomas Ager and Mr. Philip Vargas, both from NIMA (now the NGA), for their support in the NIMA 
sponsored RSM Commercial Imagery Study and RSM Tactical Imagery Study, respectively. 
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RSM was designed by Dolloff and developed at BAE Systems.  It was designed such that 
multi-image geopositioning, including rigorous error propagation, using RSM and its 
image support data is virtually identical to results obtained using the corresponding 
original sensor model and its image support data for all images involved.  Images may be 
from any combination of sensors, including those with different modality (e.g. optical, 
radar).  The RSM is also designed to support optimal adjustment of the RSM sensor 
model (image support data) for any image.  Thus, RSM also supports triangulation of a 
group of images in a manner analogous to a bundle adjustment using the corresponding 
original sensor models.  Therefore, the RSM design supports all image exploitation 
processes, ranging from basic image rectification to multiple-image, multiple-sensor 
triangulation. 
 
 
1.3 Limitations of replacement sensor models  
 
  1.3.1 Substitute sensor model limitations 
 
RSM’s replacement of the original sensor model’s ground-to-image relationship is a true 
replacement.  Some previous sensor models that are termed “replacement” are not true 
replacements relative to the original sensor model’s ground-to-image relationship, as 
described below. 
 
A true replacement consists of a general ground-to-image function that maps a three-
dimensional ground point (object space) coordinate x  to a corresponding two-
dimensional image point (pixel) coordinate i .  This function is usually a rational 
polynomial.  The polynomial coefficients are fit to a dense network of ground point-
image point correspondences, i),( ix , mi ,..,1= , generated using the original sensor 
model and its image support data.  This network of “fit” points usually corresponds to an 
evenly spaced grid of image points over the entire image and multiple elevation planes 
covering the expected ground space (object space) domain.  After the polynomial is 
generated, its fit accuracy relative to the original sensor model is confirmed over a 
different and denser network of ground point-image point correspondences.  At a 
common ground point, the replacement sensor model’s corresponding image point 
typically differs by less than 0.05 pixels from the original sensor model’s corresponding 
image point.  This performance is applicable over the entire, expected ground space 
domain.  
 
Figure 1 illustrates a subset of the fit points, corresponding to one row of the grid in 
image space and five elevation planes.  Of course, the polynomial is generated using the 
entire network of fit points in a weighted least-squares solution process that 
simultaneously solves for all the polynomial’s coefficients.  Thus, the entire ground space 
domain is covered by the network of fit points.  Image-rays (as illustrated for an optical 
sensor, although the concept is equally valid for SAR and other sensors) associated with 
the resultant polynomial are virtually identical to their original sensor model counterparts 
depicted in the figure.  This is also true for any image-ray, including those not associated 
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with fit points.  Hence, the polynomial is a true replacement for the original sensor 
model’s ground-to-image relationship. 
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Figure 1.  Fit grid for true replacement ground-to-image function. 
 
There are other sensor models that, although of a general form, are not true replacements, 
and should not be designated as such.  Let us term these sensor models “substitute” 
sensor models.  Their generation typically follows the same general fitting procedure 
described above, but without the use of the original sensor model to generate a dense 
network of ground point-image point correspondences.  Instead, the fit points correspond 
to a set of ground control point-image point correspondences.  These ground control 
points cover only a limited portion of the possible ground domain.  In addition, relative to 
the original sensor model, their ground point-image point correspondences are in error 
due to errors in both the ground control and the original sensor model’s image support 
data.  Due to both the control’s sparse domain and these combined errors, the resultant 
sensor model is only accurate relative to the control and only at the general vicinity of the 
ground control points.  In general, the substitute sensor model warps the ground-to-image 
space relationship, and can also be unstable due to the lesser amount of information 
available for the solution.   
 
Figure 2 illustrates some of these characteristics at the image-rays corresponding to the 
control points.  The triangle points represent control point positions along the terrain 
surface.  The dotted lines are the substitute sensor model’s image-rays.  In general, their 
warping will be even more pronounced at image-rays not corresponding to control points.  
The solid horizontal line in Figure 3 represents the difference between the original and 
substitute sensor models at the control’s elevation, i.e., that is, for the same image point 
position and same elevation, the difference in their corresponding horizontal ground point 
positions.   
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Figure 2.  Fit points for the ground-to-image function of a substitute sensor model. 
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Figure 3.  Horizontal discrepancy between the original and substitute sensor models. 
 

 1.3.2 Replacement sensor model limitations 
 
By definition, no replacement sensor model and its image support data provide direct 
details of the original sensor model and its image support data.  Thus, for example, an 
optical sensor’s focal length or a particular image’s platform position is unknown.  The 
lack of the sensor (platform) position may be a liability in terms of possible ad-hoc 
analyses.  However, in the ground space domain of the ground-to-image function, the 
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imaging locus is known.  (For a given image point, the  imaging locus is defined as all 
possible corresponding ground points.) Thus, the line-of-sight from the ground to the 
sensor can be approximated for an optical sensor using the ground-to-image function.  If 
required, the nominal sensor position could be included in the replacement sensor model 
image support data.  
 
In addition, if a particular replacement sensor model has adjustable parameters, they are 
not directly tied to the physics of the sensor and its imaging process.  This can impede 
various “reasonableness checks” associated with geopositioning and triangulation 
solutions.  For example, the magnitude of parameter adjustments can not be directly 
compared to a priori (physical) characteristics of the sensor and its image support data.  
However, such tests are still possible, some just not as intuitive to the human. 
 
No replacement sensor model can directly support an image resection, i.e., the initial 
generation of a priori support data via control.  If it were to do so, its ground-to-image 
function (support data) would be generated directly from control, and hence, it would be 
a substitute sensor model by definition.  Instead, the recommended procedure is to 
perform a resection using the original sensor model, and then generate the replacement 
sensor model’s image support data from the original sensor model and its (resultant) a 
priori image support data. 
 
All non-RSM replacement sensor models are limited by their lack of adjustability and/or 
rigorous error propagation, as discussed previously.  Let us now briefly discuss 
limitations with their ground-to-image function.  As mentioned previously, this function 
is usually a rational polynomial, with associated limitations.  The denominator of a 
rational polynomial may contain zeros within the ground space domain which makes it 
unstable.  The process that generates the polynomial should check for zeros, and if 
encountered, reformulate the solution.   
 
One approach to the reformulation is the use of a numerator-only polynomial.  However, 
in some situations high order terms must be utilized in order to achieve the desired fit 
accuracy.  For example, a polynomial may contain a term kji ZYcX , where c is a 
coefficient and the combined power kji ++  is significantly larger than 3, say on the 
order of 10.  However, with high order terms, the polynomial solution process itself can 
become unstable as well as the application of the generated polynomial.  Typically, the 
use of high order terms also corresponds to a solution with a large number of highly 
correlated parameters (polynomial coefficients), an example of “over parameterization”.   
On the other hand, there are numerous situations where a numerator-only polynomial will 
work well without the use of  high order terms, but does require a combined power higher 
than 3.  Correspondingly, a limitation of some replacement sensor models is an inflexible 
polynomial form.  They can not generate and disseminate the (higher order) numerator-
only polynomial.   
 
Another limitation with all polynomials is their oscillatory or warping behavior near and 
outside the boundary of the fit grid domain.  When generated, the appropriate domain 
must be selected, and when utilized, the ground point x  must reside within the domain. 
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Finally, there are some situations where no (rational) polynomial will work well.  In this 
case, an interpolated ground space-image space correspondence grid will work, assuming 
it is dense enough and used with an interpolator of proper order.  Linear interpolation in 
each of the three ground coordinates (tri-linear interpolation) is typically inadequate in 
terms of fit accuracy with feasible support data bandwidth, and at least second-order 
interpolation must be used.  The use of a grid as the ground-to-image function is 
discussed further in section 2.2. 
 
  1.3.3 RSM limitations 
 
Due to its flexibility and expanded functionality relative to other replacement sensor 
models, RSM is necessarily more complex. 
 
In terms of the ground-to-image function, RSM contains approaches for any given 
situation – rational polynomial, numerator-only polynomial, or interpolated grid.  
Typically the “situation” is dictated by sensor type and general application, since image 
size and image geometry are usually dependent.  However, in order to perform well and 
provide a stable solution with satisfactory fit accuracy, RSM requires a “smart” up-
stream generation process that determines the correct approach.  This can range from a 
priori generation processes tailored to each specific situation, to an automatic process that 
handles arbitrary situations.  Section 5.1 discusses this in more detail. 
 
As mentioned previously, replacement sensor models other than RSM do not provide for 
adjustability and/or rigorous error propagation.  However, in-order for RSM to do so, two 
conditions must also be satisfied.  First, the right set of adjustable parameters must be 
selected by the RSM “up-stream” generation process for the particular situation.  For 
example, most situations require 6 RSM adjustable parameters per image.  In this case, if 
only two were to be specified, RSM adjustability and error propagation capabilities 
would not match those of the original sensor model.  (See (Dowman and Dolloff, 2000) 
for a specific example.)  
 
Second, in order for RSM triangulation solutions to match those based on the original 
sensor model, the original sensor model a priori image support data must be reasonably 
accurate.  This is not a problem for most situations.  For example, the a priori position of 
a space-borne sensor may be in error by five hundred meters and the two solutions will 
still be virtually identical.  Section 6.2.2.2 provides more details. 
 
Section 5.2 discusses both the selection of the appropriate RSM adjustable parameters 
and generation of the RSM error covariance in detail. 
 
In summary, there are limitations associated with all replacement sensor models.  
However, in many circumstances, their positive features more than compensate for any 
limitations, particularly so for RSM.   
 
2.0 Sensor model functionality 



BAE Systems              RSM TRE Descriptions              Appendix C             July 23, 2004 12

 
This section describes the major functionality and components associated with an original 
sensor model and their corresponding RSM counterparts.  
 
 

2.1 Original sensor model major components 
 
An original sensor model is based on the physical details of the sensor.  It primarily 
consists of three major components: (1) a ground-to-image function, (2) adjustable 
parameters affecting the ground-to-image function, and (3) an error covariance 
corresponding to errors in the adjustable parameters.  Examples of adjustable parameters 
include adjustments to the a priori sensor position, attitude, and focal length for an optical 
sensor, and the a priori sensor position and velocity for a SAR sensor.  In general, this a 
priori data is contained in the sensor image support data.   
 
Note that the original sensor model may supply an image-to-ground function (more 
properly termed an image-and-height-to-ground function) in lieu of a ground-to-image 
function; however, the ground-to-image function can be obtained (in principle) by 
inverting the image-to-ground function.  Also, the error covariance is relative to the 
adjustable parameters of the associated image, or more generally, the multi-image error 
covariance is relative to the combined adjustable parameters for a correlated group of 
images.  The error covariance statistically characterizes the uncertainty in the sensor 
image support data, i.e., statistically characterizes the errors in sensor position, velocity, 
etc, contained in the support data.  The following expresses mathematically some of the 
above concepts for an original sensor model: 
 

{ }T
SSS

Sikik

jiij

i

E

SF

εεC

δxi

=

= ),,(
         (1) 

 
iki  is the corresponding two-dimensional image point coordinate in image i  of the three-

dimensional ground point coordinate kx .  F  is the original sensor model’s adjustable 
ground-to-image function.  iS  is the corresponding support data for image i , and 

iSδ  the 
n-dimensional support data adjustable parameters for image i .  

iSε  is the n-dimensional 
error associated with the value of 

iSδ  and represents the support data error.  Note that 
prior to an adjustment process, such as triangulation, the adjustment vector 

iSδ typically 
has a (vector) value of zero corresponding to a priori support data.   However, even 
though the adjustment value is zero, the error in the value is not.  In fact, it will typically 
be larger than when the adjustment value is non-zero. 
 
{ }E is the statistical expectation operator.  

ijSC  is the cross-covariance between the 
errors in the adjustable parameters for image i  and the adjustable parameters for image 
j .  It has dimension n×n, and corresponds to image i ’s error covariance when ji = .  

Note that all errors are assumed unbiased, i.e., { } 0ε =
iSE .  This is a reasonable 
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assumption and consistent with the error covariance as a statistical measure of support 
data accuracy.  (If the errors were biased, the error covariance would become a statistical 
measure of precision.) 
 
When ji ≠ , the cross-covariance 

ijSC  will be non-zero for one of two possible reasons.  
The first is due to a priori modeled, time-correlated, adjustable parameter errors for the 
sensor.  For example, a space-borne sensor typically has highly correlated a priori 
position errors across time spans less than the orbital period.  The second is due to a 
previous simultaneous adjustment of both sets of adjustable parameters, such as that 
which occurs during a triangulation involving images i  and j .  

ijSC  can be easily 

generalized to an 1n × 2n  matrix, corresponding to two images from two different sensors, 
one with 1n  adjustable parameters, and the other with 2n  adjustable parameters. 

 
2.2 RSM major components 

 
Analogous to the original sensor model, RSM primarily consists of three major 
components: (1) a ground-to-image function, (2) adjustable parameters affecting the 
ground-to-image function, and (3) an error covariance corresponding to errors in the 
adjustable parameters.    
 
The ground-to-image function is either a rational polynomial or an interpolator into a grid 
of ground point-image point correspondences.  The polynomial works well for space-
borne sensors and other sensors which do not have a large field-of-view.  Also, the 
polynomial form is compact, i.e., its corresponding support data bandwidth is relatively 
small.  The corresponding RSM image support data consists of the polynomial 
coefficients and various associated coordinate scale factors and offsets.  (Note that an 
RSM image-to-ground function is also available as an iterative inverse of the RSM 
ground-to-image function , as described in section 4.2.) 
 
Instead of a polynomial, interpolation into a grid of ground point-image point 
correspondences may be required to match the original sensor model’s ground-to-image 
function within the desired fit accuracy (typically 0.05 pixels root-mean-square (rms) or 
less).  This can occur when the sensor has a wide field-of-view, on the order of 90 
degrees or more.  Use of an interpolated grid can also be required if an airborne scanning 
sensor is flying at low altitude and through turbulence with resultant high frequency 
fluctuations in image geometry.  With the grid approach, the corresponding RSM support 
data consists of a grid of ground space-image space correspondences.  The ground space 
range corresponds to the image footprint over a reasonable range of height values relative 
to the ellipsoid.  The interpolator is typically second-order in each of the ground space 
components.   
 
In general, use of a ground-to-image grid with an interpolator provides features 
unavailable with a polynomial.  It will achieve the required fit accuracy for any sensor 
given a dense enough grid, although with a corresponding penalty in image support data 
bandwidth.  It is also unaffected by potential zero crossings associated with the 
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denominator of a rational polynomial.  The RSM and its support data format are very 
flexible in that a (rational) polynomial can be specified, a grid specified, or both.  If the 
latter, the interpolated grid supplies corrections to the polynomial’s evaluation, providing 
improved fit accuracy relative to the original sensor model’s ground-to-image 
relationship, and with less bandwidth than for a grid alone.  
 
The RSM adjustable parameters are independent of the particular form selected for the 
RSM ground-to-image function.  They consist of either generic parameters that adjust the 
RSM ground-to-image function’s input x , or the RSM ground-to-image function’s 
output i .  The RSM (support data) error corresponds to the errors in these adjustable 
parameters.  The following expresses mathematically some of the above concepts for 
RSM. 
 

{ }T
RRR

Rikik

jiij

i

E

RG

εεC

δxi

=

= ),,(
         (2) 

 
iki  is the corresponding two-dimensional image point coordinate in image i  of the three-

dimensional ground point coordinate kx .  G  is the RSM adjustable ground-to-image 
function.  iR  is the corresponding RSM support data for image i , and 

iRδ  the m-
dimensional support data adjustable parameters for image i .  

iRε  is the m-dimensional 
error associated with the value of 

iRδ and represents the support data error.  Note that 
prior to an adjustment process, such as triangulation, the adjustment vector 

iRδ  typically 
has a value of zero corresponding to a priori support data. 
 

ijRC  is the cross-covariance between the errors in the RSM adjustable parameters for 

image i  and the RSM adjustable parameters for image j .  It has dimension m×m, and 
corresponds to image i ’s error covariance when ji = .  (Note that all errors are assumed 
unbiased, i.e., { } 0ε =

iRE .)  When ji ≠ , 
ijRC  will be non-zero if either the corresponding 

ijSC  associated with the original sensor model and images i  and j  is non-zero, or if both 
sets of RSM adjustable parameters are simultaneously adjusted later by a “down-stream” 
user, such as that which occurs during a triangulation involving both images i  and j .  
Also, similar to its original sensor model counterparts, 

ijRC  can be easily generalized to 

an 1m × 2m  matrix associated with two different sensors, one with 1m  RSM adjustable 
parameters, and the other with 2m  RSM adjustable parameters.  Again, 

ijRC  will be non-

zero if either the corresponding 
ijSC  associated with the original sensor models is non-

zero, or if both sets of RSM adjustable parameters are simultaneously adjusted later by a 
down-stream user. 
 
 2.3 Incomplete sensor models 
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The original sensor model and its RSM counterpart described above are complete sensor 
models.  They contain all three major components required to properly perform all 
relevant geopositioning and triangulation processes.  The image provider for a given 
sensor should have access to this information for the original sensor model, and thus be 
able to generate and disseminate a complete RSM. 
 
If for some reason they do not have access to the original sensor model adjustable 
parameter and error covariance information, or choose not to make it available to the user 
community, either in a form corresponding to the original or RSM model, the 
corresponding sensor model is not complete.  It only contains the ground-to-image 
relationship.  In particular, the RSM support data would only contain the ground-to-
image function (see section 3.4).  With this data, only monoscopic geopositioning using a 
single image and a DEM, or stereo geopositioning can be meaningfully performed.  
However, the latter requires the simultaneous solution of only one ground (object) point 
and equal weight of both image rays, and neither solution includes error propagation of 
the support data errors to the ground point solution errors.  Subsequent solution accuracy 
would have to be empirically derived based on comparisons to control.  Also, with an 
incomplete sensor model, an optimal multi-image geopositioning or triangulation solution 
can not be performed.  (See section 4.1 for details on optimal geopositioning and 
triangulation.) 
 
In some sensor-specific situations, the limited functionality associated with an incomplete 
sensor model can be mitigated by the user.  This presupposes that a nominal set of 
adjustable parameters and associated error covariance information are found in the 
literature, usually based on various empirical studies.  For optimal triangulation, both the 
identity of the adjustable parameters (a priori values equal zero) and their error 
covariance are required.   ((Grodecki and Dial, 2003) provide a detailed description of 
their recommended RPC adjustable parameters and general error covariance information 
applicable to the Ikonos sensor.)   However, if control points are used in the triangulation, 
a non-optimal solution may be obtained when only the adjustable parameters are 
identified by setting the adjustable parameter error covariance to values consistent with 
conservatively large support data errors.  The non-optimal solution will approach the 
optimal solution as the number and accuracy of the control points increase.  
 
 The remainder of this report presents the RSM detailed form (section 3), the use of RSM 
for geopositioning and triangulation (section 4), the generation of RSM (section 5), and a 
summary of RSM development history, status, and performance (section 6).   
 
3.0 RSM detailed form 
 
This section describes the detailed functional form of RSM.  First, the RSM adjustable 
ground-to-image function is described, followed by a description of the RSM error 
covariance.  Next, a description of the RSM time-of-image and illumination models is 
provided which are necessary in order for RSM to capture all significant functionality of 
the original sensor model.  Finally, a general description of the RSM support data format 
is provided. 
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3.1 Adjustable ground-to-image function 

 
Figure 4 presents the RSM adjustable ground-to-image function ),,( RRG δx .  Its inputs 
are the three-dimensional ground point coordinate ( x ), the RSM image support data ( R ), 
and any RSM adjustments ( Rδ ).  Its output is the corresponding two-dimensional image 
point coordinate ( i ).  (The image subscript i  and ground point subscript k  are dropped 
for convenience.)  Ground point coordinates [ ]TZYX=x  can be relative to either a 
Rectangular coordinate system or a Geodetic coordinate system, i.e., 

[ ] [ ]TT hZYX φλ==x , where height ( h ) is above the WGS-84 ellipsoid.  The 
applicable coordinate system is specified in the RSM image support data.  If Rectangular, 
it is further defined in the RSM image support data as a specified offset and rotation 
relative to the WGS-84 ECEF (rectangular) coordinate system.  For convenience, the 
remainder of this section assumes that the applicable coordinate system is Geodetic. 
 
 
 

+ +

),,(_ RRadjx δx  ),,(_ RRadji δx  

),(
or  ),(

Rgrid
Rpoly

x
x

δx+  δi+  

x  i

Adjustable 
ground-to-image 
function: 
 

),,( RRG δx  

 
Figure 4.  RSM adjustable ground-to-image function. 

 
The RSM adjustable ground-to-image function ),,( RRG δx  consists of three 
interconnected functions: (1) a ground-to-image function, (2) a ground space adjustment 
function, and (3) an image space adjustment function.  The ground-to-image function is 
either a rational polynomial ( ),( Rpoly x ) or is an interpolator into a ground space-image 
space correspondence grid ( ),( Rgrid x ).  Either ground space or image space adjustment 
functions may be used.  All applicable functions and their supporting data, such as 
polynomial coefficients, are specified in the RSM image support data. 
 
The ground space adjustment function ( ),,(_ RRadjx δx ) modifies the ground point 
coordinate ( x ) prior to its input into the ground-to-image function.  It is a function of the 
unmodified ground point coordinate, the RSM image support data, and the RSM 
adjustable parameters.  The image space adjustment function ( ),,(_ RRadji δx ) modifies 
the image point coordinate ( i ) following its output from the ground-to-image function.  It 
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is a function of the unmodified ground point coordinate, the RSM image support data, 
and the RSM adjustable parameters.   
 
The applicable RSM adjustable parameters are specified in the RSM image support data.  
They consist of up to twenty defined parameters for the image space adjustment or up to 
sixteen defined parameters for the ground space adjustment.  Typically, the number of 
adjustable parameters specified per image ranges from 5 to 12, reflecting how many RSM 
adjustable parameters are required to capture the adjustability and error propagation of 
the original sensor model.  Their values are assumed zero unless specified otherwise in 
the image support data.  Their initial values are usually zero, and become non-zero if the 
RSM is adjusted via a triangulation process.  Their values can also become “temporarily” 
non-zero if the adjustable ground-to-image function is used to compute numerical partial 
derivatives of the image point with respect to the RSM adjustable parameters during a 
geopositioning process. 
 
Note that even when the values of the specified RSM adjustable parameters are zero and 
not explicitly included in the RSM image support data, their identities are still included 
because the RSM error covariance is relative to errors in the values of the adjustable 
parameters.  Also, when the values of the RSM adjustable parameters are zero, this does 
not imply that the corresponding original sensor model adjustable parameter values are 
zero.  That is, the RSM ground-to-image function can be generated from an adjusted 
original sensor model.  The RSM ground-to-image function automatically absorbs these 
previous adjustments. 
 
Although RSM adjustable parameters are typically either image space adjustable 
parameters or ground space adjustable parameters, in its most general form RSM can 
support a mixture of both.  In addition, both a polynomial and a grid ground-to-image 
function can be specified in the RSM support data.  If the latter, the grid is defined as 
providing corrections to the polynomial’s output. 
 
 

3.1.1 Ground-to-image function polynomial 
 

The ground-to-image function polynomial is very general in order to supply a high 
degree of fit accuracy relative to the original sensor model’s ground-to-image function 
under a wide variety of sensor types, image sizes, and image geometries.  There can be 
multiple polynomials, each corresponding to a different section of the image, although, 
only one section is typically required.  For a given section, the polynomial is a rational 
polynomial with variable order.  The image support data specifies whether the 
denominator polynomial is included, and also specifies the order of the numerator 
polynomial and, if applicable, the denominator polynomial.  The functional form of the 
rational polynomial ( ),( Rpoly x ) is as follows (note that there are actually two rational 
polynomials, one for the image point u  coordinate, and one for the image point v  
coordinate): 
 
Define [ ]Tvu=i  and [ ]TZYX=x  (normalized)    (3) 
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For the u - image point coordinate’s rational polynomial, the maximum allowed power 
for any ground coordinate, for either the numerator or denominator, is 5, i.e., 

5,,,,,0 ≤≤ dzdydxnznynx uuuuuu .  Also, the constant coefficient for the denominator is 
defined as equal to 1, i.e., 1000 ≡b .  Corresponding restrictions are also applicable to the 
v - image point coordinate’s rational polynomial. 
 
The polynomials are defined relative to normalized variables, with a range of [-1, 1].  The 
coordinate offsets and scale factors, stored as part of the support data, define the 
transformations to and from the normalized variables.  There are separate offsets and 
scale factors for each of the three ground coordinates and for each of the two image 
coordinates.  Thus, the following equation defines the relationship between normalized 
and un-normalized coordinates for an arbitrary coordinate a :   
 

rscalefacto
offsetaanormalized

−
= ,        (4) 

where the offset  and rscalefacto  correspond to the arbitrary coordinate a. 
 
Also, normalization of the input x  occurs after any adjustments due to RSM ground-
space adjustable parameters, and un-normalization of the output i  occurs prior to any 
adjustments due to RSM image space adjustable parameters (see section 3.1.3). 
 
The support data also contains two, low order and relatively low fit accuracy numerator-
only polynomials – one for u  as a function of ZYX ,, , and one for v as a function of 

ZYX ,, .  Their evaluation specifies which section and corresponding rational polynomial 
to use when the image is divided into multiple sections. 
 
Typically, space-borne sensors and many air-borne sensors require only one section for 
the entire image.  A third order rational polynomial is typical, with 20 active coefficients 
in both the numerator and the denominator.  All coefficients corresponding to a combined 
power 4≥++ kji  have a value of zero.  This rational polynomial has desirable overall 
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qualities related to fit accuracy, i.e., small differences in corresponding evaluations of the 
rational polynomial and underlying original sensor model, continuity, differentiability, 
and stability.  Its ability to successfully replace the original sensor model’s ground-to-
image relationship for many sensors is due to its inherent similarities to the basic frame-
camera projection, which is a linear rational polynomial in rectangular coordinates.  
However, because it is a rational polynomial, zero-crossings are a concern and must be 
checked for during its generation.  When fit accuracy allows it, a numerator-only 
polynomial can be specified to avoid potential denominator zero-crossing problems. 
 

 
3.1.2 Ground-to-image function grid 

 
An image’s RSM ground-to-image grid consists of an image point coordinate 

[ ]Tjj vu=i  associated with each ground point coordinate [ ]Tjj ZYX=x  located 
within a grid spanning the image’s footprint over a range of height.  The actual jx  
coordinate values are not included, but are defined by various parameters such as a grid 
origin, fixed step sizes along each of the ZYX ,,  coordinate axes, and the number of 
points per coordinate axis.  These parameters are included in the image’s RSM support 
data.  
 
The ground-to-image function ),( Rgrid x  outputs an image point [ ]Tvu=i  associated 
with an arbitrary ground point [ ]TZYX=x .  The function interpolates the ji  in a set 
of jx  surrounding x .  Piece-wise local interpolation, rather than a global spline 
interpolation, is recommended for speed.  In particular, separable tri-quadratic 
interpolation is a recommended technique, which uses a 3×3×3 grid of jx surrounding x .  
The  corresponding interpolating polynomial is of the general form: 
 

 kji

k j i
ijk ZYXcu ∑∑∑

= = =

=
2

0

2

0

2

0
,        (5) 

 
i.e., all cross-terms associated with the multiplication of three quadratic polynomials, one 
a function of X , one of Y , and one of Z .  Fixed grid spacing in each of the three ground 
space dimensions is also required.  Collectively, these properties allow for an efficient 
algorithm for the generation and evaluation of the interpolating polynomial, as described 
below.   
 
Three Z -planes are shown in Figure 5, each with a 3×3 grid in X and Y .  A two-
dimensional interpolation is first done at the points in the Z -planes indicated by the open 
circles.  Then a one-dimensional interpolation is done along the line indicated for the 
resultant image coordinate (u ) at the desired ground point position ( x ) indicated by the 
filled circle.       
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Figure 5.  Interpolation along the Z -direction. 
 

Separable interpolation can be done recursively, so that the two-dimensional 
interpolations in each plane are successively reduced to one-dimensional interpolations, 
as illustrated in Figure 6.   For a given plane, the procedure is as follows.  First, a one-
dimensional interpolation is done in the X -direction along each horizontal line, 
generating a value at the diamond (◊) using the values at each of the three cross (+) signs.   
Following these three one-dimensional interpolations, another is done in the Y -direction 
along the vertical line containing the three diamonds.  A value is generated at the desired 
open circle position using the values at each of the three diamonds.   
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Figure 6.  Interpolation within a Z -plane. 
 
 
There are a total of four one-dimensional interpolations per plane, and a total of thirteen 
one-dimensional interpolations required for the final value u  at the desired three-
dimensional ground point position x .  Each one-dimensional interpolation is second-
order (quadratic), i.e., based on a quadratic polynomial in one variable.  The general 
(Lagrange) formula for a one-dimensional,  second-order interpolation of a value s  at 
position t , using values is  at three evenly spaced positions it  (grid spacing d , and  

11 +− ≤≤ ii ttt ), can be written as follows: 
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       (6) 

 
Note that s  takes on the value 1−is , is , and 1+is  at 1−it , it , and 1+it , respectively.  
 
In our application, the independent variable t  is either X , Y , or Z , and the dependent 
variable s  is u .   The values is  are either iu  at the appropriate grid point position in the 
3×3×3 grid, or a linear combination of iu  generated from previous one-dimensional 
interpolations.  Note that all terms (weights) multiplying 11 ,, +− iii sss are invariant across 
all nine  one-dimensional interpolations in the X -direction, and all three one-
dimensional interpolations in the Y -direction performed in all three planes.  Therefore, 
they need only be computed once per direction.  Also, the overall algorithm will yield the 
same result u  for a position x  regardless the order of interpolation.  For example, X -
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planes could be used instead of Z -planes.  And, of course, the entire procedure described 
above is also applicable to the image point v  coordinate, i.e., there are actually two 
interpolating polynomials for a given x , one for u  and one for v .  Terms multiplying the 
data ( 11 ,, +− iii sss ) are identical for their corresponding one-dimensional interpolations. 
 
Analytic partial derivatives of the interpolating polynomial, and hence for the overall 
RSM ground-to-image function ),( Rgrid x , can also be generated in an efficient manner 
when required for geopositioning or triangulation solution algorithms.  The above 
procedure that generates u  at x  using (thirteen) one-dimensional interpolations is 
modified in order to generate the partial derivative of u  with respect to the desired  
ground coordinate component ( X , Y , or Z ) at the position x .  The modification is 
minor: if a particular one-dimensional interpolation (of the thirteen) involves the desired 
ground coordinate component, simply replace Equation 6 with the following equation, 
otherwise evaluate it as before.   
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The above description for interpolating polynomial generation and evaluation is not 
specific on how the actual  3×3×3 grid is selected for a given x .  There are two 
reasonable methods for grid selection, each with different effects on the local 
(mathematical) topological properties of the interpolating polynomial (Equation 5) and 
the global topological properties of the RSM ground-to-image function ),( Rgrid x .  The 
topological properties (continuity and differentiability) are now discussed and the two 
methods of grid selection defined. 
 
The first method selects the 3×3×3 grid such that x  always resides in the lower corner 
1×1×1 “cube” of the  eight cubes contained within the  3×3×3 grid.  (The cubes are 
formed by connecting the grid points (+) in the 3×3×3 grid  (see  Figure 5) along each 
direction ZYX ,, .)  Correspondingly, the same interpolating polynomial is applicable to 
all x  within that 1x1x1 cube.   This 1x1x1 cube is the interpolating polynomial’s domain,  
and the interpolating polynomial is continuously differentiable over its domain.  Also, the 
RSM ground-to-image grid function ),( Rgrid x  is continuous across its entire ground 
domain, since each individual interpolating polynomial replicates its 1x1x1 cube’s  
ground space-image space correspondence.  The function ),( Rgrid x  is also continuously 
differentiable at all ground points in its domain except those within a grid face. 
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The second method selects the 3×3×3  grid  nearest x , i.e., x  is always “centered” within 
the grid.  Depending on the value of x , it will reside in any one of the eight cubes 
contained in the selected 3×3×3  grid.  Correspondingly, all one-dimensional 
interpolations (Equation 6) used to evaluate the interpolating polynomial always use the 
nearest three points for interpolation.  This interpolation may be more accurate than 
interpolation based on the first method.  However, with this second method, the 
corresponding ),( Rgrid x  is no longer continuous across the entire ground domain.  Of 
course, the interpolating polynomial itself is still continuously differentiable over its 
(local) ground domain.  Let us term the second 3×3×3  grid  selection process “centered”, 
and the first “cornered”.  RSM grid testing to-date (see section 6.1 for RSM development 
status), has utilized the cornered technique exclusively, with good results. 
 
In addition,  regardless the selection technique, a 3×3×3 grid may not be available for a 
particular x , such as that located at the boundary of the supplied RSM ground-to-image 
grid.  In this case, linear interpolation/extrapolation is utilized, i.e., the one-dimensional 
interpolations are first order (linear). 
   
Note that separable tri-cubic interpolation is also a feasible approach for the RSM  
ground-to-image function ),( Rgrid x .  The interpolating polynomial generation and 
evaluation procedure is basically the same as that for separable tri-quadratic interpolation, 
except that a 4×4×4 grid  is used, and the one-dimensional interpolations are third order 
(cubic).  The one-dimensional interpolations are also set-up such that the point for 
interpolation is symmetrically located or “centered”, i.e., there are always two data points 
on either side.  Therefore, x  always resides in the center cube of the 27 cubes contained 
within the selected 4×4×4 grid.  The one-dimensional interpolations are based on four 
point Lagrange interpolation.  The underlying polynomial is a cubic polynomial in one 
variable that passes through all four fit (data) points.  This insures that the interpolating 
polynomial is continuously differentiable across its local (1x1x1 cube)  domain, and that 
the ),( Rgrid x  function is continuous across its entire (global) ground domain. 
 
Alternatively, the one-dimensional interpolations can instead be formulated to insure that 
the resultant ),( Rgrid x  is also continuously differentiable across its entire ground 
domain.  For each one-dimensional interpolation, the coefficients of its underlying cubic 
polynomial are determined by imposing four constraints.  Two constraints are that the 
polynomial pass through the inner two fit points.  The other two constraints require that 
the derivative be continuous when the set of fit points is shifted forward or backward,  
e.g., the derivative of the polynomial at fit point 3 must equal the derivative of the 
polynomial at fit point 2 were it based on four fit points advanced one grid unit.  The 
following presents the corresponding one-dimensional interpolation formula for a value 
s  as a function of t , and its corresponding derivative with respect to t  (grid spacing d , 
and  1+≤≤ ii ttt ).    
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3.1.3 Adjustments 
 
The adjustable parameters are specified in an image’s RSM support data.  They consist of 
a subset from the adjustable parameter choice set R~δ , defined as: 
 

{ }GI RRR ~~~ δδδ =  , where        (10) 

{ }...~
yyxyxxyxoyyxyxxyxoI vvvvvvuuuuuuR δδδδδδδδδδδδδ =  

{ }...~ szyxR oooG δδκδβδαδδδδ =  
 
RSM adjustable parameters specifically identified above are most often specified for 
RSM image space adjustments and RSM ground space adjustments in the RSM image 
support data.  There are a total of twenty specifiable image space adjustable parameters in 

IR~δ .  Those involved with the Z coordinate, e.g., xzuδ , are typically not specified due to 
the coordinate system they reference, as discussed below.  There are a total of sixteen 
specifiable ground space adjustable parameters in GR~δ .  The seven identified above 
correspond to a seven-parameter transformation, as discussed below.  The remaining nine 
adjustable parameters consist of first-order rate terms in all three ground coordinates, and 
are typically not specified. 
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The image space adjustment function ( ),,(_ RRadji δx ) utilizes a local, rotated tangent 
plane coordinate system.  A ground point coordinate x  represented in this system is 
indicated with a * superscript, i.e., as [ ]TZYX ***=x* .  The system is defined as 
follows: 
 

)(xx' T=  , Geodetic to WGS-84 ECEF coordinate transformation 
)( bx'Ax* −=            (11) 

 
The 3×3 rotation matrix A and the offset vector b are specified in the RSM image 
support data.  They typically define a coordinate system that is a local tangent plane 
coordinate system with an origin centered in the image footprint at a nominal elevation, 
and then rotated such that the resultant *Z  corresponds to an axis aligned with the 
imaging locus direction (at the origin), the resultant *X  corresponds to an axis aligned 
with the image line (sweep) direction ( in object space), and the resultant *Y  corresponds 
to an axis which completes the right-hand rectangular system. 
 
The members of IR~δ  are “rate” terms.  The values of the selected IR~δ  members 
(adjustable parameters) are multiplied by the appropriate *x  coordinate values 
corresponding to the associated ground point and the adjustment result δi   added to i .  
For example, assume that six members { }yxyx vvvuuu δδδδδδ 00  of the choice 

set IR~δ  are specified in the RSM support data via “on/off flags” associated with all 
twenty members of IR~δ .  These specified members define the components of the RSM 
adjustment vector Rδ , whose corresponding value is also specified in the RSM support 
data.  For a given ground point the associated image space corrections (δi ) are computed 
as follows: 
 

[ ]TyxoyxoR vvvuuu δδδδδδ=δ  , via RSM image support data  (12) 
** YuXuuu yxo δδδδ ++=  

** YvXvvv yxo δδδδ ++=  

[ ]Tvu δδ=δi  
  
The ground space adjustment function ( ),,(_ RRadjG δx ) also utilizes the local, rotated 
tangent plane coordinate system defined above.  The first seven members of its adjustable 
parameter choice set GR~δ  contain adjustable parameters that define a seven-parameter 
transformation relative to this coordinate system.  Thus, if the first seven members in 

GR~δ  are specified, the adjustment function first transforms the ground point coordinate 
from an x  to an *x  representation, applies the seven-parameter transformation using the 
values of the adjustment parameters contained in the RSM adjustment vector Rδ , 
converts the resultant *x  back to an x  representation, and inputs the resultant x  into the 
ground-to-image function.  Specifically: 



BAE Systems              RSM TRE Descriptions              Appendix C             July 23, 2004 26

 
[ ]TR szyx δδκδβδαδδδ 000=δ , via RSM image support data 
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3.2 Error covariance 
 
The RSM error covariance statistically describes the image support data errors and 
supports rigorous error propagation.  It is usually generated from the corresponding 
original sensor model error covariance, and in such a manner that both contain equivalent 
information.  Section 4 describes its fundamental role in optimal geopositioning and 
triangulation algorithms. 
 
There are two selectable forms for the RSM error covariance information supplied in the 
RSM image support data, direct and indirect as detailed below.  The direct form is 
relatively straight forward and supports any group of correlated images, regardless the 
mechanism that induced their correlation.  However, at time of generation, it requires 
knowledge of the specific correlated images, and for a large number of images, requires 
non-negligible image support data bandwidth.  On the other hand, the indirect form 
requires little image support data bandwidth, and does not require knowledge of the 
specific correlated images at time of generation.  However, the correlation between 
images must conform to an a priori model, and the indirect form is somewhat 
complicated. 
 

3.2.1 Direct error covariance 
 
The first form for the RSM error covariance directly supplies a multi-image error 
covariance that is associated with the image under consideration as well as other 
identified images that together form a “correlated image group,” i.e., a set of images with 
correlated support data errors.  It is an error covariance relative to p  RSM adjustment 
vectors, associated with the p  correlated images ( 1≥p ).  The dimension of the error 
covariance is (m1 + .. + mp)×(m1 + .. + mp), assuming im  RSM adjustable parameters per 
image i .  For each image, the errors in its adjustment vector are assumed constant over 
all pixel positions (image points) within the image (although their effect does vary with 
pixel position via imaging geometry effects).  Also, if there are multiple images ( 1>p ), 
the mechanism for their correlation of errors is arbitrary, ranging from known a priori 
correlation mechanisms for images from the same sensor during a reasonably short time 
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period (e.g., an orbit’s period for a space-borne sensor), to a triangulation process 
involving images from different sensors. 
 
Specifically, the upper triangular portion of the following symmetric multi-image error 
covariance is directly provided in the RSM support data for an image: 
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 , where { } ji
T
RRR mmE

jiij
×=  ,εεC .  (14) 

 
The number of images, their id’s, and their number of RSM adjustable parameters per 
image are also identified in the RSM image support data.  Images need not correspond to 
the same sensor nor have the same number of adjustable parameters, i.e., in general, 

ijRC  

has dimension mi×mj.  In addition, the identities of the applicable RSM adjustable 
parameters for the current image are also included.  
 
Recall that RSM image support data for a specific sensor and specific image is generated 
by any suitably configured “up-stream” process, as described in section 1.2.  If the RSM 
image support data is not being generated in near real-time by this process, RC  may be 
redundantly supplied by this process in each of the p -image’s RSM support data.  If the 
“down-stream” user is working with all p -images, he will utilize the entire RC , which is 
available in the support data for any of these images.  If he is working with only one 
image, he will extract from that image’s RSM support data the appropriate single-image 
block from the p -image RC .   
 
On the other hand, if the “upstream” process generates RSM image support data in near 
real time, p  (and RC ) may grow in the support data for each successive correlated 
image.  For example, assume that there are two, time-ordered, correlated images.  When 
the RSM support data is generated for the first image, the error covariance RC  only 
references this image ( 1=p ).  When the RSM support data is next generated for the 
second image, the error covariance RC  references both images ( 2=p ).  In this case, the 
“one-image” RC  provided in the first image’s RSM support data will be duplicated in the 
relevant portion of the larger “two-image” RC  contained in the second image’s RSM 
support data.  A “down-stream” user working with both the first and second images will 
utilize the larger RC  that is available in the second image’s support data.   
 
When the RSM error covariance RC  is of the direct form as described above, it is also 
termed the RSM direct error covariance.  If it corresponds to the triangulation of RSM 
adjustable parameters, it is automatically generated by the triangulation process and 
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available for direct insertion into the RSM support data.  Otherwise, it is first generated 
from its original sensor model counterpart SC  (see section 5.2) and then inserted into the 
RSM support data.  Section 4.1.3, Equation 27, provides a specific example of an original 
sensor model error covariance, and Equation 28, the corresponding RSM direct error 
covariance computed from it. 
 

3.2.2 Indirect error covariance 
 
The second form for the RSM error covariance is applicable to the image under 
consideration as well as any number of other initially unidentified (possibly future) 
images associated with the same sensor.  This form for the error covariance is indirect in 
the following sense.  The sensor identification and time-of-image data contained in an 
image’s RSM support data is sufficient for the user to identify any other collected images 
that are also from the same sensor and have correlated errors.  The images’ collective 
RSM support data contains error covariance data sufficient for the user to build a multi-
image error covariance relative to the errors in the adjustment vectors for these images.  
The resultant multi-image error covariance is based on an assumed piece-wise linear 
decay time correlation model for errors.  The correlation time is defined as the time 
between image center pixel positions.  
 
   3.2.2.1 Detailed description 
 
The key to this general and flexible approach is to supply error covariance and time 
correlation data applicable to the original sensor model, where errors are associated with 
true physical parameters, and the time correlation structure is actually applicable.  A 
“mapping matrix” is also supplied that transforms original sensor model adjustable 
parameters (errors) to RSM adjustable parameters (errors).  With this data, the user can 
build the appropriate multi-image joint error covariance relative to the RSM adjustable 
parameters.  Note, however, that this approach does not explicitly identify the original 
sensor model adjustable parameters to the user, nor does it require his use of the original 
sensor model in any way.  Specifically, the following is supplied in an image i ’s RSM 
support data: 
 

iΦ  , the m ×n  mapping matrix for image i     (15) 

iiSC  , the original sensor model’s n×n  error covariance for image i  
( )τρ

iS , the original sensor model’s time correlation function for image i , where  
τ  is defined as the time between images ( 0≥τ )  
 
In addition, the identities of the actual RSM adjustable parameters for the image are 
included.  Using the above data from all images of interest, the user computes the block 
entries of the multi-image error covariance ( RC , see Equation 14) as follows: 
 

T
iSiR iiii

ΦCΦC = , or more generally for the m×m cross-covariance,   (16) 

( ) T
jSijSiR iiiij

ΦCΦC τρ= , where pji ≤,  
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Note that in the last equation, 

iii SijS C)(τρ corresponds to the original sensor model’s 
cross-covariance 

ijSC .  This is based on the assumption that 
iiSC and the function ( )τρ

iS  
are invariant across the correlated images pi ,..,1= , i.e., errors are modeled as a wide 
sense stationary stochastic process (Papoulis, 1991).  This is the typical case.  However, 
the RSM support data also supports the case when these values do change across 
correlated images.  In this case, the ( )τρ

iS  and 
iiSC  used to generate 

ijRC  in Equation 16 
are replaced with “averages” taken over the variable values of ( )τρ

iS  and 
iiSC , 

respectively, pi ,..,1= , to insure the resultant RC  is a legitimate error covariance, i.e. at 
least positive semi-definite.  That is, for the original sensor model, a general stochastic 
error process is approximated using p  separate wide sense stationary models - the values 
of ( )τρ

iS  and 
iiSC  are allowed to change across images.  Further details on the 

“averaging” algorithm are not provided in this section, since this approach to error 
modeling is not necessary for most geopositioning applications. 
 
The following details the forms of 

iiSC  and ( )τρ
iS , of Equations 15 and 16.  Assuming 

that the original sensor model errors are associated with n  adjustable parameters, these n  
errors are further sub-divided into w  subgroups, each containing kn  errors, where 

wk ,..,1=  and nn
w

k
k =∑

=1

.  The errors in each of these subgroups are assumed 

uncorrelated with errors in the other subgroups.  Each of these subgroups has its own 
nk×nk positive definite error covariance matrix, 

iikSC , and scalar correlation function, 
( )τρ

ikS , provided in the support data.  (Examples of typical subgroups for an optical 
sensor with 7=n  adjustable parameters (errors) are a 3-element sensor position 
subgroup, a 3-element attitude subgroup, and a 1-element focal length subgroup.)  Thus, 
assuming the n  adjustable parameters are ordered in concert with subgroup ordering, 

iii SS C)(τρ  becomes the n×n symmetric block diagonal matrix:  
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The individual functions ( )τρ

ikS  , where τ  is the time between images, are specified in 
the RSM image support data.  As mentioned earlier, the correlation functions ( )τρ

ikS  are 
specified as piece-wise linear decay functions.  Figure 7 presents an example of a three 
“piece”, piece-wise linear decay function.  For a particular function ( )τρ

ikS , up to nine 
sets of ( )τρ ,  correspondences, used to define the individual linear segments, can be 
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specified in the RSM support data.  Note also that by using multiple linear segments, an 
exponential correlation function, Te /τ−  , where T  is the time constant, may be accurately 
approximated.  The piece-wide linear decay model is more general than the exponential 
decay model, the former can represent the latter, but not vice versa. 
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Figure 7.  Piece-wise linear correlation function example. 
 
The properties of ( )τρ

ikS , 
iikSC , and iΦ , insure that RC  will be a legitimate error 

covariance matrix once assembled.  To that end, the RSM format requires the piece-wise 
linear correlation function ( )τρ

ikS  to be a non-negative, non-increasing, convex function 
of time (τ ) between images.  It also has a “floor” value of zero, i.e., ( ) 0=τρ

ikS , for all 

maxττ > , where maxτ  is associated with the last linear segment. 
 
When the RSM error covariance RC  is of the indirect form as described above, it is also 
termed the RSM indirect error covariance.  It is generated from its original sensor model 
counterpart SC  (see section 5.2) and then inserted into the RSM support data.  Section 
4.1.3, Equation 27, provides a specific example of an original sensor model error 
covariance, and in the latter part of the section (near Equation 28), describes its 
corresponding RSM indirect error covariance. 
 
 
   3.2.2.2 Optional classification of errors 
 
This subsection describes various optional classifications and statistical representations of 
errors that are supported by RSM.  They are not required for most geopositioning (and 
triangulation) applications. 
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The multi-image error covariance RC  associated with the direct form (Equation 14), and 
associated with the indirect form (Equations 15 - 17) is applicable to errors assumed 
constant over all pixels in an image.  However, these errors do vary from image to image 
in a correlated manner when they are from the same sensor.  They can also be correlated 
with errors from different sensors when RC  is represented by the direct form.    
 
Let us term these types of errors as “image” errors.  Historically, the use of an “image” 
error model is the standard approach for both geopositioning and triangulation processes.  
It is required for triangulation, since a set of image-wide adjustments (corrections) are 
solved for each image in a multi-image solution process.  However, it is not required for 
geopositioning - the optimal solution of object position(s) using multiple images, where 
corrections to the image support data are not solved for, but image support data errors are 
correctly accounted for in the measurement weighting process. 
 
In the most general case of geopositioning, the image support data errors can also be 
modeled as “image element” errors where an image element is defined as that portion of 
an image associated with a unique time (see section 3.3). The “image element” error 
model corresponds to a (wide sense) stationary stochastic error process, where time is 
associated with an image element, not an entire image.  Typically, for scanning sensors, 
an image element corresponds to an image line, i.e., all v  coordinates associated with a 
specific u  coordinate.    
 
For a given realization of the stationary stochastic error process, a different error value is 
associated with each image element (time).  Thus, support data errors associated with two 
elements in either the same or two different images from the same sensor can be specified 
as two different, but correlated, error values.  The “restricted image element” error model 
adds the restriction that the errors are uncorrelated between elements from different 
images.  Thus, only support data errors associated with two elements in the same image 
can be specified as correlated. 
 
The RSM indirect approach for error covariance supports this generality, when the 
appropriate flags are set in the RSM image support data.  In fact, all the individual 
adjustable parameters (errors) associated with a subgroup can be specified as “image”, 
“image element”, or “restricted image element.”  For both the “image element” error 
model and “restricted image element” error model, the subscripts i  and j  utilized in 
Equations 14 and 16, correspond to support data errors at element i  and element j  of 
two (possibly the same) images.  In addition, τ  in Equations 15 and 16 is defined as the 
time between element i  and element j .  However, the mapping matrix *iΦ , the error 
covariance **iiSC , and the correlation function 

*iSρ are now indexed by the image *i  
containing the element.  The RSM direct approach for error covariance is applicable to 
“image” errors only; hence, the RSM direct approach does not support this generality. 
 
Typically, “image element” error modeling in support of geopositioning can utilize a 
smaller number of corresponding adjustable parameters (errors) than does “image” error 
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modeling in support of triangulation.  For example, for an optical push-broom sensor, 
both position and velocity adjustable parameters may be included for triangulation, but 
only position may be needed for geopositioning.  Assuming wide sense stationary 
stochastic error processes, the “velocity effect” is captured by time correlation between 
position errors associated with different times (elements within the same or different 
images).  This more general case of error modeling for geopositioning is most applicable 
to scanning sensors, such as push-broom sensors, when image scan time is relatively 
long.   
 
Further details on “image element” and “restricted image element” error modeling are not 
provided here, since this “fine-grain” approach to error modeling is not necessary for 
most geopositioning applications.  
  
The RSM support data associated with the indirect specification of error covariance 
contains one final, optional set of data.  This data defines the “un-modeled error” 
covariance.  This error covariance ( UC ) can be used to represent the summed effects in 
image space of all (high frequency) errors that can not be represented as errors in the 
original sensor model adjustable parameters, and hence, RSM adjustable parameters via 
its error covariance RC .  Un-modeled errors are assumed “restricted image element” 
errors, where the element is defined as an image point, or image pixel ),( vu , and “time” 
between elements is defined as two-dimension pixel distance between pixel positions 
within the same image.  Thus, these errors are modeled as wide sense stationary fields, 
i.e., their correlation function is a product of two correlation functions, one a function of 
image u  distance and the other a function of image v  distance.  Also, there is no 
“mapping matrix” involved, as the errors are represented directly in image space.  Other 
than these exceptions, specification of un-modeled error characteristics is done using the 
same approach as done for RC .  In particular, the RSM image support data for image k  
supplies a 2×2 error covariance 

kUC  corresponding to un-modeled image line and sample 
errors at an arbitrary pixel position within the image.  It also supplies the scalar 
correlation functions, uρ  and vρ , that specify the correlation between arbitrary image 
pixel position pairs within the same image.   If we assume there are m  image 
measurements ivu ),(  of interest in the image, the corresponding 2m×2m multi-
measurement error covariance, expressed directly in image space, equals: 
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, where      (18) 

 

kii UU CC =   and  
kij UijvijuU vu CC )()( ∆∆= ρρ . 
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If a geopositioning application involves more than one image, there can be multiple 
UC ’s, one for each image.  However, the associated errors are uncorrelated between 

images.  UC  is not needed for most applications.  A simple example of its use, and 
independent of the original sensor model and RSM adjustable parameters, is the 
statistical characterization of excessive RSM ground-to-image fit errors, if they were to 
occur.  (Note that for a geopositioning solution process, UC  is added directly to the 
mensuration error covariance MΣ  - see Equation 21 of section 4.1.1.) 
 
  3.2.3  Practical Considerations   
 
It is recognized that in some applications, it may not be practical to generate an RSM 
error covariance with full fidelity.  The RSM support data has the flexibility to provide 
error covariance information at any level, as summarized in Table 1 for cases ordered by 
increasing fidelity (Case 1 lowest fidelity). 
 
Case Description Direct Error Covariance Indirect Error Covariance 
1 No information available and/or 

down-stream users do not 
require error covariance 

Do not generate Do not generate 

2 Empirically derived diagonal 
covariance directly referencing 
the RSM adjustable 
parameters; no time correlation 

Place directly into one-image Direct 
Error Covariance  

An equivalent formulation possible; not 
described because Direct Error 
Covariance simpler 

3 Like 2, but empirically derived 
time correlation between 
images from same sensor also 
applicable and available and 
described as piece-wise linear 
decay per uncorrelated 
subgroup  
 
(Typically a one-segment 
correlation decay to zero at 
time T and one uncorrelated 
subgroup) 

An equivalent formulation possible 
for a set of known, correlated 
images; not described because 
Indirect Error Covariance more 
straightforward 

Place covariance into original sensor 
model covariance portion of Indirect 
Error Covariance, place piece-wise 
linear decay function per uncorrelated 
subgroup into corresponding function, 
and set mapping matrix to the identity 
matrix. 

4 Covariance referencing the 
original sensor model 
adjustable parameters is 
available; no time correlation 
 
(Covariance typically diagonal) 

Place into one-image Direct Error 
Covariance; first transform to RSM 
adjustable parameter equivalent 
(sections 3.2.1 and 5.2 - resultant 
covariance is non-diagonal and 
image dependent 

An equivalent formulation possible; not 
described because Direct Error 
Covariance simpler 

5 Like 4, but time correlation 
between images from same 
sensor also applicable and 
available and described as 
piece-wise linear decay per 
uncorrelated subgroup 

An equivalent formulation possible 
for a set of known, correlated 
images; not described because 
Indirect Error Covariance more 
straightforward 

Place into Indirect Error Covariance; 
first transform to RSM adjustable 
parameter equivalent (sections 3.2.2 
and 5.2) 

6 A correlated group of images 
from a triangulation.  The 
triangulation’s multi-image 
(full) error covariance is 
available 

If from an RSM triangulation, place 
directly into multi-image Direct Error 
Covariance; if from an original 
sensor model triangulation, first 
transform to RSM adjustable 
parameter equivalent (sections 3.2.1 
and 5.2)  - resultant multi-image 
covariance is full (non-diagonal with 
non-zero cross-image blocks) 

n/a 
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Table 1.  Possible approaches to support data error covariance representation by 

increasing fidelity. 
 
 

3.3 Time and illumination models 
 
RSM includes a time-of-image model and an optional image illumination model in order 
to supply virtually all of the functionality associated with an original sensor model.   
 
The detailed relationship between time and pixel position (image point coordinates) is 
embedded in the original sensor model’s ground-to-image relationship, and hence, 
implicit in the RSM ground-to-image relationship.  However, an explicit relationship 
between time and pixel position is still required for ancillary RSM applications, such as 
time interval calculations associated with the RSM indirect error covariance.  The RSM 
time-of-image model is as follows: 
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0t  is image acquisition time, ugn  is number of adjacent u  positions acquired 

simultaneously, ugt  is time between adjacent u  groups, vgn  is number of adjacent v  
positions acquired simultaneously, and vgt  is time between adjacent v  groups.  These 
various parameters are contained in the image’s RSM support data.  For a frame camera, 

ugt  and vgt  are typically set to 0, corresponding to one time applicable for the entire 
image.  For a pushbroom sensor, there is typically a unique time for each image line, thus 

1=ugn , ugt equals image line acquisition time, and 0=vgt .  
 
An image illumination model provides the direction of illumination associated with each 
pixel position within the image.  For an optical sensor, it is the direction of the sun’s 
illumination, while for a SAR sensor, it is the direction of incident radiation.  
Illumination direction information supports various image mensuration functions, such as 
height by shadow measurement.  The RSM illumination model provides the azimuth 
angle (λ ) and elevation angle (ψ ) as a function of pixel position ),( vu  for the associated 
ground point position (at a nominal elevation) as follows: 
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The various parameters defining these equations are contained in the image’s RSM 
support data. 
 

3.4 Support data format 
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A subset of eight possible groups of RSM image support data is associated with an image 
(see Table 2).  Group 1 is always provided.  It contains various identifiers and a time of 
image model and an optional illumination model.  The RSM ground-to-image function is 
either a polynomial (Groups 2 and 3) or a grid (Groups 4 and 5 ).  Either groups 
associated with a polynomial or groups associated with a grid must be provided.  Group 6 
contains the identity of the RSM adjustable parameters and their values, and is only 
required when their values are non-zero (adjusted).  Group 7 contains the direct form of 
the support data error covariance (RSM direct error covariance), and Group 8 the indirect 
form (RSM indirect error covariance).  Note that the identity of the RSM adjustable 
parameters corresponding to errors referenced by the error covariance are also contained 
in Groups 7 and 8.  Although neither Group 7 nor Group 8 is explicitly required, one or 
the other must be included for a complete sensor model.  Also, if the RSM ground-to-
image function is a polynomial and there is only one image section, Group 2 need not be 
supplied.  Similarly,  if the RSM ground-to-image function is a grid and there is only one 
image section, Group 4 need not be supplied. 
 
 
Group 
Number 

Group Name Summary of Contents 

1 RSM Identification Various id’s, image footprint, time model, illumination model 
2 Polynomial Identification Ground-to-image polynomial image section information 
3 Polynomial Rational polynomial coefficients, offsets, and scale factors for a 

particular image section 
4 Grid Identification Ground-to-image grid image section information 
5 Grid Ground-to-image grid for a particular image section 
6 Adjustments RSM adjustable parameters selected and their values 
7 Error covariance (direct) RSM direct error covariance, including image id’s and the 

number of RSM adjustable parameters per image 
8 Error covariance (indirect) Data for building RSM indirect error covariance, including 

current image’s mapping matrix 
 

Table 2.  RSM support data groups summary. 
 
The above groups and their contents reflect the current design for the RSM support data.  
(Each of the eight groups is associated with a planned NITF Tagged Record Extension, 
see section 6.1 for RSM development status.)  Note that a typical image requires only one 
polynomial (section) and a direct error covariance.  Therefore, only three groups would 
be required: 1, 3, and 7. 
     
4.0 Geopositioning with RSM 
 
Any geopositioning or triangulation solution technique, used in conjunction with an 
original sensor model and its image support data, can also be used in conjunction with 
RSM and its image support data, by simply substituting the original sensor model’s 
adjustable ground-to-image function F , adjustable parameters Sδ , and associated error 
covariance SC , with RSM’s adjustable ground-to-image function G , adjustable 
parameters Rδ , and associated error covariance RC , respectively. 
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Optimal geopositioning provides an optimal solution of an object’s position using one or 
more images, where corrections to the image support data are not solved for, but image 
support data errors are correctly accounted for in the measurement weighting process.  In 
particular, we define an optimal solution as the  “Best Linear Unbiased Estimate” 
(B.L.U.E.).  It is an unbiased estimate and a linear function of the measurement data.  Of 
all unbiased and linear estimates, it has the minimum error variance or, equivalently, the 
minimum mean square error.    Let us subsequently equate an “object” with a “ground 
point”, and its corresponding three-dimensional ground point coordinate values with its 
“position”, for convenience.  An example of an optimal geopositioning algorithm using 
RSM follows.   
 
 4.1 Optimal algorithms 
 
  4.1.1 Geopositioning 
 
An optimal solution for a ground point’s position using 1≥p  images requires optimal 
weighting of the multiple (conjugate) image measurements corresponding to the ground 
point.  Weighting is primarily dependent on the multi-image (support data) error 
covariance RC .  This weighting also significantly affects the solution’s a posteriori error 
covariance, which can be used to generate reliable solution accuracy estimates.   
 
The error covariance RC  statistically describes the major error source affecting the 
ground point solution.  The other error source is mensuration error, i.e., the errors in the 
identification and measurement of the ground point’s conjugate image points (pixels).  Its 
error covariance is represented as MΣ .  
 
Figures 8 and 9 graphically depict the optimal solution for a two-image (stereo) case and 
a general, multiple image case, respectively.  For the two-image case, the optimal 
solution can be represented graphically as lying along the minimum separation vector 
between the two rays associated with the image measurements.  It is midway along the 
vector only if the images have equal weight, e.g., the  imaging geometry is symmetric, 
and RC ’s diagonal blocks, 

11RC  and 
22RC , are equal.  If one image has more accurate 

support data, the solution is closer to its ray.  This typically occurs when either the 
images are from different sensors, or from the same sensor but acquired at significantly 
different times, e.g., from two different orbital passes for a space-borne sensor.   
 
Because support data errors are most often the dominant error source, weighting is 
essentially inversely related to RC .  Both the degree of correlation between errors 
associated with different adjustable parameters from the same image and between 
adjustable parameters from different images (characterized by the 

ijRC  image cross-
blocks) also significantly affect the weighting and subsequent solution.  Proper weighting 
is only possible using the appropriate error covariance, RC  if using RSM and SC  if using 
the original sensor model.  See section 4.1.3 (an expansion of details presented in 
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(Dowman and Dolloff, 2000)) for further discussion and examples on the importance of 
proper weighting.  In general, the only solution unaffected by the use (or non-use) of the 
error covariance is the single-image (monoscopic) solution, since there is no redundant 
information (additional image measurements) available.  However, without proper use of 
the error covariance, the solution’s a posteriori error covariance is non-representative of 
the true solution errors. 
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Figure 8.  Optimal stereo solution. 
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Figure 9.  Optimal multi-image solution. 
 
 
The following presents the equations defining the optimal solution for a ground point’s 
three-dimensional position x  when using RSM.  The general solution approach is 
weighted least squares with a priori estimate – [Sorrenson, 1980; Gelb, 1974; Bar-Shalom 
and Fortmann, 1988].  The solution is based on the linearization of a non-linear problem.  
The optimal solution is xδxx += 0 , where xδ  is a correction to an a priori position 
estimate 0x and computed as follows: 
 

WzBCδ T
xx =  , where        (21) 

)( 0mmz −=  is the a priori measurement residual (misclosure) vector, 
1)( −+= T

RRRM BCBΣW the weight matrix, and 
11 )(

0

−− += WBBCC T
xx  the solution’s a posteriori error covariance. 

 
The algorithm iterates (sum xδ  into 0x , re-compute predicted measurements and partial 
derivatives) until convergence.  Figure 10 summarizes the iterative solution process. 
Convergence of the solution typically occurs within two iterations when reasonably 
accurate a priori position estimates are utilized (on the order of a few hundred meters).  
Convergence occurs when image residuals stabilize between iterations and 0→xδ . 
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Figure 10.  Optimal Geopositioning Solution Algorithm. 
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The following presents the detailed definitions associated with equation 21:  
 

[ ]TZYX 00 =x  is 3×1 a priori ground point position, 
{ }T

xxx E
000

εεC =  is 3×3 error covariance of a priori position 0x , 

xδ  is 3×1 correction to a priori position, 

[ ]TT
p

T iim ..1=  is 2p×1 measurement vector containing a 2×1 image measurement of 
the ground position from each of p  images, 

[ ]TT
Rp

T
R p

RGRG ),,(..),,( 0100 1
δxδxm =  is 2p×1 predicted (a priori) measurements, 

xmB ∂∂= /  is 2p×3 partial derivatives of the measurements with respect to position and 
evaluated using predicted measurements at the a priori operating point ( 0x ), 

[ ]TT
R

T
RR m

δδδ ..
1

=  is *m ×1 vector of RSM adjustable parameters from p  images 
( *m = )..( 21 pmmm +++ ), 

RR δmB ∂∂= /  is 2p×m* partial derivatives of measurements with respect to RSM 
adjustable parameters and evaluated using predicted measurements at the a priori 
operating point ( 0x ), 

MΣ  is 2p×2p error covariance for mensuration (image measurement) errors, 
{ }T

RRR E εεC =  is m *×m * error covariance for RSM adjustable parameters Rδ , 
z  is 12 ×p  a priori measurement residual vector, 
W  is 2p×2p image measurement weight matrix, 

xδxx += 0  is 3×1 a posteriori solution - best estimate of position, 
{ } 11 )(

0

−− +== WBBCεεC T
x

T
xxx E  is 3×3 a posteriori solution error covariance. 

 
Note that G  is the RSM adjustable ground-to-image function, 

iRδ  the RSM adjustable 
parameter (values) for image i , and RC  is the error covariance for the p  sets of RSM 
adjustable parameters from p  correlated images ( see equations 14 and 15 through 17).  
Note that if all images (support data errors) are not from a single correlated image group, 

RC  contains cross-blocks of zero between independent groups of correlated images.  For 
example, assume there are 5 images, 6 RSM adjustable parameters per image, 2 images 
in correlated group one with corresponding 12×12 error covariance 1RC , and 3 images in 
correlated group two with corresponding 18×18 error covariance 2RC .  The 30×30 error 

covariance RC  would then be assembled as follows: 







=

2

1

0
0

R

R
R C

C
C .  Both 1RC  and 

2RC  are full (non-diagonal) matrices, and in general, the individual image blocks they 
contain are full as well.  Further note that, in general, the weight matrix W  is a full 
matrix due to the projection of RC  to image space via the partial derivative RB .  Also, 
W  is inversely related to the sum of the projected support data error covariance ( RC ) 
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and the mensuration error covariance ( MΣ ).  Although it can be non-diagonal, the 
mensuration error covariance is typically a diagonal matrix with variances on the order of 
1 pixel-squared down the diagonal. 
 
The partial derivatives can be computed either analytically or numerically.  For example, 
the 2×3 block of B  beginning in row 12)1( +⋅−i  and column 1 can be approximated 
with 2×3 numerical partial derivatives, represented symbolically as: 
 

xδxδxxxi ∆−∆+=∆∆ /)],,(),,([/ 00 ii RiRii RGRG ,      (22) 
where x∆  is the appropriate step size.  Note that 

iRδ  is the current value (zero if 
unadjusted) of the RSM adjustment vector for image i . 
 
Similarly, the 2× im  block of RB  beginning in row 12)1( +⋅−i  and column 

1)..( 11 +++ −imm  can be approximated with 2× im  numerical partial derivatives, 
represented symbolically as: 
 

)(/)],,())(,,([)(/ 00 iiiii RRiRRiRi RGRG δδxδδxδi ∆−∆+=∆∆ ,    (23) 
where )(

iRδ∆  is the appropriate step size. 
 
Of course, the three-dimensional x∆  and the im -dimensional 

iRδ  are perturbed one 
component at a time.  Also, the numerical derivative technique outlined above is based on 
only one step (perturbation) per component, and is the fastest technique.  Other 
techniques, such as the average of results from a step forward and a step back can be 
more accurate, and should be considered (See (Press, and Teukolsky, Vetterling, 
Flannery, 2002), chapter 5, for various numerical differentiation algorithms).   In 
addition, when numerical partial derivatives are incorporated, and if the adjustable 
ground-to image function (G ) utilizes multiple polynomials ( poly ) corresponding to 
different sections of the image, it is recommended that the same section be used during 
calculations corresponding to the same ground point. 
 
Analytic partial derivatives involve the partial derivatives of the functions making up G , 
i.e., poly  or grid , and adji _  or adjx _  (see Figure 4).  The following is a specific 
example assuming the use of poly  and adji _ , and the nominal 6 RSM image space 
adjustable parameters (see Equation 12).   Partial derivatives are computed for a two-
dimensional image measurement from image i , with corresponding blocks of B  and RB  
designated by the subscript i : 
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The entries *X  and *Y  correspond to the horizontal coordinates of 0x  expressed in the 
local system for image i  as described in section 3.1.3.  In general, analytic partial 
derivatives associated with adjx _  and RSM ground space adjustable parameters will be 
somewhat more complex than above because adjx _  actually involves more than an 
additive correction to x , and x  is an input, not an output, of the ground-to-image 
function. 
  
The a priori position estimate 0x  used in Equation 21, and in its various ancillary 
calculations, such as partial derivatives, can be initialized with the RSM adjustable 
image-to-ground function for any image i  selected from the p  images (or the averaged 
results from all the images).  This function is an iterative inverse of the RSM adjustable 
ground-to-image function, and represented symbolically as ),,,( 0

1
iRii RZG δih −= , where 

h  is two-dimensional horizontal position.  Both the two-dimensional image measurement 
ii  and an a priori estimate of height 0Z  are input, and the a priori position estimate set 

equal to the a priori height and resultant horizontal position, i.e., [ ]TT Z00 hx = .  Also, 
the corresponding a priori error covariance 

0xC  is set to a diagonal matrix with large 
variance (typically 8101×  2m ) down the diagonals.  Because the values are large, little 
weight is given to the a priori estimate (nor should it be, since the estimate is actually 
correlated with the sensor support data via this practical initialization process).  However, 
the use of 

0xC  insures a stable solution, particularly in the case of poor imaging 
geometry.  Regarding the values of 

0xC , a monoscopic solution ( 1=p ) is an exception.  
The a priori height comes from the intersection of an imaging locus with a Digital 
Elevation Model (DEM), and the (3,3) element of 

0xC  is set to the DEM’s variance of 
elevation error.  Further details on the RSM adjustable image-to-ground function are 
presented in section 4.2. 
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Note that if the coordinate system for x  is any other than the Geodetic coordinate system 
(or Rectangular) used by the RSM adjustable ground-to-image function G , x  is simply 
converted to Geodetic coordinates prior to calling G .  Similarly, the output x  from the 
RSM adjustable image-to-ground function can be converted from Geodetic coordinates to 
the other coordinate system. 
 
 
  4.1.2 Multi-ground point geopositioning and triangulation 
 
Equation 21 also provides a simultaneous best estimate for multiple ground points by 
simply augmenting the defined variables in the appropriate manner.  In particular, xδ  
(and 0x , x ) is augmented with the additional ground points for solution, m  is 
augmented with additional measurements to the additional ground points, B  is expanded 
in accordance with the additional image measurements and ground points, RB  and W  
are expanded in accordance with the additional image measurements, and 

0xC  is 
expanded in accordance with the additional ground points for solution.  In particular, 
assuming k  ground points, xδ  becomes a k3 ×1 vector, m a q2 ×1 vector, where q is the 
total number of image measurements from p  images to k ground points, B  a q2 × k3   
matrix, RB  a q2 × m *  matrix,  W  a q2 × q2  matrix, and 

0xC  a k3 × k3  matrix. 
 
Equation 21 is also directly related to triangulation.  In particular, if Equation 21 is 
further augmented to solve for Rδ  for all relevant ( p ) images, as well as to solve for 
numerous ( k ) tie and ground control points measured in the images, i.e., 
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where Rδ  is dimension 1*×m , the weight matrix W  becomes 1−

MΣ , and the elements of 

0xC  corresponding to the control points contain their improved (smaller) accuracies 
relative to the tie points (Consistent with the assumptions for support data and 
mensuration errors, control point errors are assumed unbiased; hence, their error 
covariance is a statistical measure of accuracy.)  Like the geopositioning solution process, 
the triangulation solution process is also iterative (sum xδ  into 0x  and Rδ  into a 0Rδ  
between iterations and re-compute predicted measurements and partial derivatives).  Note 
that all vectors and matrices in Equation 25 are expanded and augmented in accordance 
with the previous paragraphs describing a multiple ground point geopositioning solution. 
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Equation 25 is based on a direct solution (matrix inversion) of the corresponding normal 
equations.  The normal equations may be written as: 
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In some scenarios the number of parameters for solution may become very large.  
Therefore, Equation 26 is usually solved for by means other than direct matrix inversion.  
(See (Mikhail, 1976; Mikhail and Bethel and McGlone, 2001) for solution techniques as 
well as a general description of triangulation.) 
 
Similar to its role in a geopositioning solution, RC also plays an important role in a 
triangulation solution.  It represents the a priori accuracy of the support data to be 
adjusted, i.e., { }T

RRR E εεC = , where the a priori value of Rδ is zero.   The larger the value 
of RC , the larger the statistically permitted adjustment to the RSM support data.  Its 
influence on the solution increases as the number of control points and/or their accuracy 
decreases.   In fact, there are many triangulations that involve no ground control points; 
thus, RC  is a dominating factor.  They occur for relative orientations and for absolute 
orientations involving overlapping groups of images from different sensors.  The images 
from the more accurate sensor are used to control the images from the other via the tie 
points.    
 
Note that, strictly interpreted, a triangulation based on RSM is not a bundle adjustment, 
i.e., directly tied to the effects of the sensor’s physical parameters on the “bundle of 
rays”.   Also, analogous to SC , RC  is required to be positive definite (hence, invertible) 
for the triangulation solution, but only positive semi-definite for the geopositioning 
solution, since MΣ  is assumed positive definite.  In addition, when the augmentation of 
Equation 21 corresponds to a multi-ground point and multi-image geopositioning solution 
and not a triangulation solution (it does not include Rδ  for solution), it can still be 
considered a triangulation’s partitioned solution for ground points; analogous to the 
solution of the reduced normal equations, but for the ground point adjustments instead of 
sensor parameter adjustments.   
 
Finally, if a downstream user adjusts the RSM image support data by a triangulation, the 
RSM image support data format supports the inclusion of the corresponding adjustable 
parameter values and related error covariance.  (Note that the initial RSM ground-to-
image function does not change.)  Thus, the user need only modify the applicable RSM 
image support data accordingly and disseminate it to others, if so desired. 
 
  4.1.3 Optimal versus non-optimal solution comparisons 
 
A simulation was performed to illustrate the advantages of an optimal geopositioning 
algorithm.  A set of two-ground point, multi-image geopositioning solutions were first 
performed using the original sensor model to illustrate the effects of additional images 
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and proper weighing on the solution.  An additional solution was then performed using an 
RSM counterpart to illustrate its virtually identical results.   The sensor simulated was 
relatively simple, as described below, but adequate to demonstrate the principals of 
optimal geopositioning. 
 
A space-born sensor was emulated using a simulated frame camera with seven sensor 
error (adjustable) parameters consisting of position, attitude, and focal length errors.  A 
focal length of 3 meters and a vertical ground sample distance of 3 m were assumed.  
Images were 10k×10k pixels.  Six images were simulated, three from each of two passes.  
The sensor support data errors were modeled as time correlated errors for images from 
the same pass.  Figure 11 illustrates the imaging geometry for this scenario and Figure 12 
the corresponding image footprints and horizontal position for the two ground points for 
solution.  The elevations above the local tangent plane for the two ground points were 
1000 m and 300 m, respectively.  The imaging geometry was relatively poor, with object-
to-image elevation angles ranging from about 35 to 45 degrees relative to the local 
ground tangent plane, and convergence angles between pairs of same pass images 
ranging from about 8 to 35 degrees. 
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Figure 11.   Imaging geometry. 
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Figure 12.  Image footprints. 

 
Table 3 presents the original sensor model’s support data error characteristics for images 
1-3.  Support data error standard deviations (“sigma’s”) were ten times larger for images 
4-6.  Let us term images 1-3 as coming from “Pass 1”, and images 4-6 as coming from 
“Pass 2”.  Images within the same pass have correlated support data errors, and images 
from different passes are uncorrelated.  Support data errors were modeled as wide-sense 
stationary, Gauss-Markov, stochastic processes, a commonly used error model.   
 

Error parameter Sigma Time Const 

Along track position 4 m 2000 s 

Cross track position 8 m 3000 s 

Radial position 2 m 1000 s 

Rotation ω  .00001 rad 200 s 

Rotation φ  .00001 rad 100 s 

Rotation κ  .0002 rad 300 s 

Focal .001 m 5000 s 

 

Table 3.  Sensor support data error characteristics for Pass 1 images. 
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The original sensor model’s adjustable parameters for image i  from Pass 1 consist of a 
17×  vector 

iSδ with adjustments to along track position, .. , focal length, with 
corresponding error covariance 

iiSC , consisting of a diagonal matrix with the square of 
the corresponding sigma’s from Table 3 down the diagonal.  The value of  

iSδ is zero, 
with the covariance of the value’s error represented by 

iiSC .  The cross covariance 
ijSC  

between images i and j  from pass 1 is a diagonal matrix with diagonal elements equal to 
the corresponding diagonal elements in 

iiSC  multiplied by the applicable correlations.   
The time constants of Table 3 specify the correlations.  For example, the time constant 
for rotation (attitude) error ω  about the focal plane axis x  equals 200 seconds; thus, the 
correlation between  rotation ω  errors from images i  and j  equal Tije /τ− , where 

200=T seconds , and ijτ  is the absolute value of the time difference between the images.  

For images 1 and 3, ijτ =10 seconds, and the correlation equals 95.005./ == −− ee Tijτ .  The 

iiSC  and 
ijSC  corresponding to images from Pass 2 are identical in form to those of Pass 

1, except that they are 100 times larger. 
 
In particular, if we designate SC  as the 4242×  error covariance corresponding to the 
collective support data adjustable parameters for images one through six (Pass 1 and Pass 
2): 
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(Note that if the six images had also been adjusted simultaneously in a triangulation 
process prior to the geopositioning solution, in general, all the adjustable parameter 
(errors) would be correlated and all the zeros replaced with non-zero values in the above 
matrices.) 
  
A simulation was performed 100 times, with a different set of random numbers utilized 
each time consistent with all error sources, their standard deviations, and their 
correlations.  In addition to sensor support data errors, mensuration errors (0.5 pixel, one-
sigma) and errors in the a priori estimates of the two ground points (1000 m, one-sigma,  
for all three ground components) were generated.  At the end of each simulation run, a 
number of different original solutions were performed using the same measurements and 
a priori ground point estimates: (1) an optimal solution “Original 1”, (2) an optimal 
solution “Original 2”, (3) a non-optimal solution “Original 2 No Correlation”, and (4) a 
non-optimal solution “Original 2 Equal Weight”.  “1” indicates that a solution utilized 
measurements from Pass One, images 1-3, and “2” indicates that a solution utilized 
measurement from both Pass One and Pass Two, images 1-6.  “Original” indicates an 
optimal solution using the original sensor model and Equation 21 (with 

SSF Cδ ,, substituted for RRG Cδ ,, , respectively).  “Original No Correlation” indicates 
that the solution incorrectly ignores the correlation between sensor support data errors 
between different images, i.e., assumes all are uncorrelated ( 0=

ijSC ).  “Original Equal 
Weight” indicates all image measurements from all images are incorrectly given an equal 
weight of 1.0, i.e., the sensor support error covariance SC  is not used for weighting. 
 
Table 4 presents the simulation and solution results.  The solutions’ actual position errors 
(“rms”) are presented as well as their corresponding error propagation or accuracy 
estimates (“sigmas”).  Absolute statistics (“abs”) refer to ground point 1, relative 
statistics (“rel”) refer to the ground point 1-ground point 2 pair; units are meters. 
 
Solution position error was calculated as the root-mean-square (rms) error over the 100 
runs in each ground coordinate ( ZYX −− ).  The absolute position error for each 
individual run was computed by differencing the solution’s ground point position from 
the true ground point position for both ground points 1 and 2, and also subtracting the 
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two differences for their relative position error, i.e., the ground point 1 absolute position 
error is ( 11 Txx − ) and the ground point 1-ground point 2 relative position error is 
( )()( 2211 TT xxxx −−− ), where the subscript T  represents the true position. Solution 
error propagation results were represented as ( ZYX −− ) standard deviations computed 
from the solution a posteriori error covariance averaged over the 100 runs.  The a 
posteriori error covariance was virtually invariant over the 100 runs.   
 
In addition to absolute accuracy, relative accuracy is an important solution metric in most 
geopositioning and triangulation applications.  (Here, the term “accuracy” represents 
both the statistical characterization of a solution’s actual ground point position error as 
well as its corresponding estimated or predicted characterization, i.e., error propagation.)  
In a properly modeled solution, relative accuracy is almost always less than 2  times 
the absolute accuracy, due to the positive correlation of solution position errors between 
the various ground points which use the same images (support data errors) for 
measurements.  In many cases, relative accuracy is significantly better (less than) the 
absolute accuracy.  (Thus, when comparing a candidate replacement sensor model’s 
solution to an original solution, relative accuracy should always be considered explicitly.  
Similar absolute accuracy between the two solutions does not automatically insure 
similar relative accuracy.) 
 
 
 

Solution abs rms abs sigma rel rms rel sigma
X-Y-Z (m) X-Y-Z (m) X-Y-Z (m) X-Y-Z (m)

original_1 38  32  34 40  37  37 40 39  39 42  41  41

original_2 29  24  26 30  27  28 19  18  17 18  16  16

original_2_no_cor   45  41  44   28  26  27   21  21  19   13  12  12
original_2_eq_wt   55  58  53 n/a   29  27  29 n/a

replacement_1 38  32  34 40  37  37  40 39  39  42  41  41
replacement_2  29  24  26 30  27  28 19  18  17 18  16  16  

 
Table 4.  Solution performance. 

 
Original 1 is the optimal solution using measurements from images 1-3.  Note that its 
actual position errors (“rms”) are in close agreement with its estimated position errors 
from the solution’s error propagation (“sigma”), indicative of a well-modeled solution.  
Original 2 utilizes additional measurements from images 4-6.  The solution improves 
significantly relative to Original 1, even though the additional images’ support data errors 
are much larger, corresponding to standard deviations ten times as large.  This illustrates 
the benefits of using images from different passes or different sensors.  Even if their 
support data errors are significantly larger, their improvement in overall image-to-object 
geometry can make them well worthwhile.  And, of course, if the additional images’ 
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support data errors are of the same statistical magnitude as those of the initial images, 
solution results will improve even more.  In particular,  Original 2 absolute accuracy 
would be on the order of 10 meters, or about three times as accurate as the Original 1 
solution.  In addition, using more simultaneous measurements (images) allows for more 
meaningful blunder detection and editing processes, when included in the solution 
process.   
 
The degradation in Original 2 No Correlation solution results relative to Original 2 
illustrates the importance of accounting for correlated support data errors in the solution 
process.  Also, note the unreliability of the solution’s estimated accuracy relative to the 
true solution accuracy (“sigma” vs. “rms”).   
 
The degradation in Original 2 Equal Weight solution results relative to Original 2 is even 
more pronounced, illustrating the general importance of (inversely) weighting the image 
measurements by their support data error covariance.  Also, with artificial equal 
weighting, there are no meaningful accuracy estimates provided by the solution.  This is a 
significant loss.  In many geopositioning applications, timely and reliable accuracy 
estimates are as critical as the solution’s ground point position. 
 
Note that, although the simulation implemented a  geopositioning solution, all of the 
above general observations regarding the advantages of using many measurements 
(images), and the need to utilize the appropriate sensor support data (adjustable 
parameter) error covariance and error cross-covariance (time correlations), are equally 
applicable to triangulation solutions.  Triangulation solutions based on artificially equal, 
or simplistic, weighting should be avoided if at all possible. 
 
Of course, it must be mentioned that all the advantages described previously with an 
optimal geopositioning (or triangulation) solution are predicated on the availability of a 
support data error covariance that is reasonably consistent with actual support data errors.  
In the real-world, this is can be some what problematic for some sensors. 
 
In addition to the various original solutions discussed above, RSM geopositioning 
counterparts to Original 1 and Original 2, termed Replacement 1 and Replacement 2, 
respectively, were also performed for each of the same 100 runs.  For each RSM solution, 
the RSM adjustable parameter vector 

iRδ  for an image i  consisted of the nominal 6 
image space adjustable parameters (see Equation 12), and the corresponding multi-image 
direct error covariance RC  was generated from its SC  counterpart, as described in 
sections 3.2.1 and 5.2.   RC  corresponds to 3 images (18 adjustable parameters) for 
Replacement 1, and 6 images (36 adjustable parameters) for Replacement 2.  (An actual 
RSM ground-to-image polynomial was not generated for simplicity.  Thus, fit error was 
assumed zero; not overly optimistic considering actual fit error is expected to be less than 
0.01 pixels (rms), see section 6.2).  The RSM solutions used the same general algorithm 
(Equation 21) as did the Original 1 and Original 2 solutions. 
 
Table 4 also presents the Replacement 1 and Replacement 2 results.  They are virtually 
identical to the Original 1 and Original 2 results, respectively.  In addition, section 6.2.2 
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presents RSM to original solution comparisons, using real (non-simulated) data 
corresponding to push-broom sensors, and full RSM generation.  
   
Finally, let us discuss RC  in a little more detail.  The following is the form for the three-
image direct error covariance RC  utilized in the Replacement 1 solution.  RC   is 
provided directly in the RSM support data, and is generated as described in section 5.2.  
An entry RijC  corresponds to images i  and j  and is computed, prior to its placement in 
the RSM support data, using its original sensor model counterpart SijC , the image i   
mapping matrices iΦ  , and the image j  mapping matrix jΦ .   Since there are 6 RSM 
adjustable parameters and 7 original sensor model adjustable parameters per image, SijC  
is a 77×  matrix, iΦ  a 76×  matrix, and RijC  a 66×  matrix. 
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Note that in this particular example, the structure of SC  is also consistent with three 
images { 3,2,1 } from the same sensor and with errors corresponding to a wide sense 
stationary stochastic error process with an a priori time correlation model, i.e., SiiC  and 
image i ’s time correlation model are identical for all three images, and SijC can be 
computed for any i  and j  using them.  Thus,  RC  can also be represented as an indirect 
error covariance, if so desired.  In this case, each image i  would supply its own unique 

iΦ  , the (common) data representing SiiC  , and the (common) a priori time correlation 
model, and hence, SijC  for any j .  The RSM user would then compute RC  exactly as 
specified in Equation 28.  Regarding the data representing SiiC  and SijC , for this 
particular example there are 7 uncorrelated error subgroups, each corresponding to one 
adjustable parameter.  Thus, for each entry in Table 3, the corresponding variance 
(“Sigma” squared)  is supplied in the RSM support data as well as the parameters 
defining a piece-wise linear decay time correlation model (Figure 7) that closely models 
the effect of the time constant (“Time const”).  (Note that in practice, the original sensor 
model would actually be modeled using the piece-wise linear decay time correlation 
model directly, and the parameters for that model directly available for the RSM support 
data.)   
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 4.2 Adjustable image-to-ground function 
 
The RSM adjustable image-to-ground function is an iterative inverse of the RSM 
adjustable ground-to-image function.  Given a two-dimensional image point coordinate i  
and a priori ground point height above the ellipsoid 0Z , it provides the corresponding 

two-dimensional horizontal ground point coordinate [ ]TYX≡h .  The resultant three-

dimensional ground point coordinate is represented as [ ] [ ]TTT ZYXZ 00 == hx .  
The RSM adjustable image-to-ground function is represented symbolically as follows: 
 

),,,( 0
1

RRZG δih −= ,          (29) 

where [ ]TYX=h , 0Z  is the desired (a priori)  height above the ellipsoid, [ ]Tvu=i , 
R  the RSM sensor support data for the associated image, and Rδ  is the corresponding 
RSM adjustable parameter value.  
 
An algorithm for computing ),,,( 0

1
RRZG δi−  is as follows: 

 
set 1h  to a corresponding a priori estimate of h  inside the image footprint  (30) 

set estimate of 3×1 ground point coordinate [ ]TT Z 011 hx =  
set loop index 1=i  
compute 2×1 ),,( Rii RG δxi =  
compute 2×1 ii iii −=∆  
compute 2×2 partial derivative matrix ( )iih ∂∂ /  
compute 2×1 ( ) iii iihh ∆∂∂=∆ /  

set new estimate of ground point coordinate ( )[ ] ( )[ ]TT
ii

TT
ii ZZ 0011 hhhx ∆+== ++  

set output 1+= ihh  
check magnitude of ii∆  for convergence 
increment i  and repeat loop if non-convergence 
 
The a priori estimate of h  required to seed the above algorithm can be set to the 
horizontal coordinates of a “reference ground point”  that is provided in the RSM support 
data for the image.  However, to insure convergence when the image geometry varies 
significantly over the corresponding ground footprint, it can also be set to the horizontal 
ground point coordinates computed by the interpolation, at height 0Z  and image point 
coordinate i , of eight ground point-image point correspondences also provided in the 
RSM support data.  The individual ground points correspond to an image corner position 
at either the maximum or minimum height from an a priori height range (typically 
corresponding to the height range used to generate the image’s RSM ground-to-image 
function). 
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The partial derivatives used above are usually computed numerically and as follows: 
 
compute [ ] ( ) [ ]( ) ( )[ ]TRiR

T
i RGRXGXXvXu δxδx ,,,,00/1// −+= δδδδδδ  (31) 

compute [ ] ( ) [ ]( ) ( )[ ]TRiR
T

i RGRYGYYvYu δxδx ,,,,00/1// −+= δδδδδδ  
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Typical step sizes for Xδ  and Yδ  are on the order of GSD⋅10 , and typical convergence 
criteria for the magnitude of ii∆  is 001.0  pixels for both the u and v  components.  GSD  
is the ground sample distance, preferably computed at the reference ground point and 
relative to the ground plane perpendicular to the imaging locus at the reference ground 
point, with units of meters/pixel.  Note that the RSM adjustable image-to-ground function 
( 1−G ) is independent of whether the RSM adjustable ground-to-image function (G ) is 
based on a polynomial or a grid. 
 
5.0 RSM Generation 
 
This section describes how to generate the RSM (image support data). 
 

5.1 Ground-to-image function 
 

5.1.1 Ground-to-image function polynomial 
 
The RSM ground-to-image function polynomial ( ),( Rpoly x ) can be generated manually, 
semi-automatically, or automatically.  If generated manually, the number of image 
sections and their locations are specified, and a polynomial generated for each.  Each 
polynomial is also specified as a numerator-only polynomial or a rational polynomial.  
The polynomial order is specified as well prior to its generation.   
 
The other extreme is automatic generation, where various candidate polynomials are 
automatically generated and their fit accuracy relative to the original sensor model’s 
ground-to-image relationship automatically assessed.  The process stops when the pre-
defined fit accuracy is met.  The overall process has an outer loop over image sectioning 
and an inner loop over polynomial order (pre-defined minimum and maximum).  The 
image can be divided into 1 to 256 sections in the image row direction, and from 1 to 256 
sections in the image column direction, with a constraint of no more than a total of 256 
rectangular sections.  Either numerator-only polynomials, rational polynomials, or both 
types are pre-definable as candidates.  Parameters affecting the overall process, such as 
fit accuracy requirements, allowed polynomial order, and maximum number of image 
sections allowed can be predefined by sensor type.  Typically, for either a geodetic or a 
local tangent plane ground coordinate system, the polynomial’s X  and Y  orders are the 
same, but the Z  order may be less.  If the above process does not provide a polynomial 
with sufficient fit accuracy, an interpolated grid many be selected as the RSM ground-to-
image function. 
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Typical fit accuracy requirements are less than 0.05 pixels (rms).  This requirement is 
typically met with only one section per image.  The actual polynomial generation process 
for a pre-determined image section is now defined.  The polynomial is assumed 
applicable to the line image coordinate u, since the process is identical for the polynomial 
for the sample image coordinate v. 
 
In general, there are three practical approaches to the polynomial generation process.  
They are represented symbolically as follows: 
 
(1) Dmc =      Linear     (32) 
(2) mmDc )(=     Quasi-linear-1 
(3) mcDc ∆=∆ )( 0  , ccc ∆+= 0    Quasi-linear-2 
 
The first approach solves for the vector of polynomial coefficients c  as a true linear 
function of the vector of image measurements m associated with the fit grid. D  is a 
measurement-to-coefficient mapping matrix, whose values are independent of the 
measurements m  and any a priori estimate 0c  of the coefficients.  This approach is only 
applicable to a numerator-only polynomial, and is termed “Linear”.   
 
The second and third approaches solve for the vector of polynomial coefficients c  
associated with a rational polynomial, i.e., coefficients pertaining to both numerator and 
denominator.  Because of the denominator, this problem is inherently non-linear.  Both of 
these approaches represent “quasi-linear” solutions.  In particular, the solution for the 
coefficients c  in the second approach is a linear function of the measurements m , 
however, the matrix D  is also a function of the measurements m .  This approach is 
termed the “Quasi-linear-1”.  
 
The third approach is based on a first-order Taylor series expansion of a non-linear 
problem.  Corrections c∆  to a priori coefficient values 0c  are solved for as a linear 
function of corresponding delta measurements m∆ .  The matrix D  is also a function of 

0c .  This approach is termed the “Quasi-linear-2”.  
 
In general, for each approach, the matrix D  represents a weighted least squares solution 
process, as detailed below. 
 
   5.1.1.1 Linear solution for numerator-only coefficients 
 
Assume the u  image space coordinate polynomial coefficients are ordered as follows: 
 

..2
54321 +++++= XaZaYaXaau   , with a corresponding    (33) 

n×1 vector of coefficients for solution [ ] ...21
T

naaa=c    
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Generate an m -point ground-to-image fit grid using the original sensor model (see Figure 
1).  That is, a iu  is associated with each grid ground point ix , in Geodetic coordinates, 
for mi ,..,1= .  Both the image space coordinates and ground space coordinates are also 
normalized, with a range of [-1, 1].  The corresponding offsets and scale factors are 
included in the RSM support data in order to convert to and from normalized coordinates, 
when implementing the polynomial. 
   
Typically, the ground-to-image fit grid is generated using the original sensor model’s 
adjustable image-to-ground function, evaluated over an evenly spaced horizontal grid of 
image points within the image section, and over a set of evenly spaced height planes.  
Symbolically, this function is represented as [ ] ),,,( 0

1
S

T SZFYX δih −== .  An original 
sensor model adjustable function is utilized so that the RSM ground-to-image polynomial 
will automatically absorb any previous adjustments made to the original sensor model’s 
image support data.  Also, if there is more than one image section making up the image, 
the fit grid for the current section may be defined to partially overlap any adjacent section 
to insure continuity.   
 
Assume that there are zn  evenly spaced height planes about a nominal height, un  image 
points along the image u -axis, and vn  image points along the image v -axis.  Assume 
that the polynomial’s maximum X , Y , and Z orders are nxu , nyu , and nzu , respectively.  
Furthermore, assume that the Z  coordinate is approximately aligned in the direction of 
increasing height.  Define ),max(_ max nynx uupwrxy = , and ),min(_ min vu nnnumuv = .  It 
is required that maxmin __ pwrxynumuv > , and that nzz un > .  For a reasonable amount of 
redundancy (degrees of freedom), )1_(5.2_ maxmin +≅ pwrxynumuv , and 

)1(5.1 +≅ nzz un .  A typical fit grid is 61111 ××=×× zvu nnn .  Let the total number of 
grid points equal m . 
 
Associate with each ix , a scalar measurement ii um = , with basic measurement 
(observation) equation: 
 

iiim ε+= cb  ,          (34) 
where [ ] cb ∂∂== /..1 2

iiiiii mXZYX , a 1×n row vector.  The error iε  typically 
corresponds to the summed effects of modeling error and random noise, if applicable. 
 
Define the m×1 measurement vector [ ]Tmmmm ..21=m  ,    (35) 

and the m×n partial derivative matrix [ ]TT
m
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The linear, (equal) weighted least squares solution for the coefficients c  is the (unique) 
solution to the following normal equations: 
 

WmBcWBB TT =)( , with equal weights mxmIW = .     (36) 
 
Symbolically, the solution can be represented as: 
 

Dmc = , where WBWBBD TT 1)( −=        (37) 
 
The solution c  minimizes the weighted sum of the square of the a posteriori 
measurement residuals, i.e., the quadratic cost function: 
 

)()( BcmWBcm −− T .        (38) 
 
Identical weight for all measurements ( IW = ) is used because there is no reason to 
weight one measurement more than another, i.e., there is no a priori statistical description 
of the error.   
 
The solution for the image v  coordinate polynomial is as above for the u  image 
coordinate polynomial, and uses the same ground-to-image correspondence grid. 
 
Once the polynomial is computed, its fit accuracy is assessed.  Another ground-to-image 
(evaluation) grid is generated using the original sensor model.  It typically has twice the 
density as the fit grid in each of the grid’s three dimensions.  The polynomial is then 
evaluated at each ground point in the evaluation grid, and its corresponding u  image 
coordinate output is differenced from the evaluation grid’s corresponding u  image 
coordinate value.  Statistics, including the root-mean-square (rms), are then taken over 
the differences associated with all evaluation grid points.  Note that if RSM image 
support data is being generated in near-real time, the above process may be bypassed.  
Instead, assuming enough redundancy, the a posteriori measurement residuals associated 
with the fit grid can be computed and statistics taken, or for even faster results, an a priori 
fit accuracy contained in a data base may be utilized, indexed as a function of sensor 
type, etc. 
 
   5.1.1.2 Quasi-linear solution for coefficients (Method 1)  
 
The problem set-up is basically the same as in the Linear approach (section 5.1.1.1) in 
that a grid of redundant data is generated.  However, the vector for solution is expanded 
( 21 nnn += ) to include the coefficients from both a numerator polynomial and a 
denominator polynomial.  The number of fit points m  may also require modification in 
order to maintain the desired degrees of freedom (redundancy): 
 

..)1/(..)( 2
4321

2
54321 ++++++++++= XbZbYbXbXaZaYaXaau ,   (39) 
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with a corresponding n×1 vector of coefficients for solution 
[ ] [ ] .....

21 11
T

nn
TT

b
T
a bbaa== ccc   

 
For a given fit point i , consider iu  as a measurement im , with measurement equation: 
 

ibbaai ii
m ε++= )1/()( cbcb , where       (40) 

[ ]..1 2
iiiia XZYX

i
=b , is a 1× 1n  row vector,  

[ ]..2
iiiib XZYX

i
=b , a 1× 2n  row vector, and iε  the error.   

 
Note that 

iab  is the partial derivative of the numerator polynomial with respect to the 
coefficients ac , and 

ibb  is the partial derivative of the denominator polynomial with 
respect to the coefficients bc .  
 
Cross-multiplying by the denominator and rearranging terms, the basic scalar 
measurement equation becomes: 
 

*)1( ibbiaaibbbbiaai iiiii
mmm εε +−=++−= cbcbcbcbcb  ,    (41) 

where *
iε  is the error associated with the new measurement equation. 

 
In order to linearize the problem, we consider the im on the right side of Equation (41) as 
a fixed parameter.  The measurement im  can then be considered a linear function of the 
coefficients for solution: 
 

**
iii

b

a
iim εε +=+




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= cb

c
c

b  ,         (42)  

where [ ]
ii biai m bbb −= , a 1×( 1n + 2n ), or equivalently 1×n, row vector.  Note that ib  

can be considered the partial derivative of the measurement im  with respect to the 
coefficients c . 
 
Again, define the m×1 measurement vector [ ]Tmmm ..1=m  and the m×n partial 

derivative matrix [ ]TT
m

T bbB ..1= .  The weighted least squares solution for the 
coefficients c  is the solution to the normal equations: 
 

WmBcWBB TT =)( , with equal weights mxmIW = .     (43) 
 
Symbolically, the solution can be represented as: 
 

mmDc )(= , where WBWBBmD TT 1)()( −= .     (44) 
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Note that the image measurements-to-coefficients mapping matrix D  is a function of the 
measurements, represented as )(mD , due to the inclusion of the scalar im  in the 
computation of ib , or equivalently, the measurement vector m in the matrix B . 
 
The solution c  minimizes the quadratic cost function:  

)()( BcmWBcm −− T .        (45) 
 
Because the matrix B  is an explicit function of the measurements m , the above cost 
function does not give equal weight to each measurement im ’s a posteriori residual, even 
though IW = .  However, this can be compensated for as follows.   Let the solution 
become iterative, where only the weight matrix changes between iterations, and use a 
weight matrix in Equation 43 after the first iteration equal to: 
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the scalar 2)1( −+= bbi i

W cb , and  bc  is from the last iteration’s solution.  (Note that 
2)1( −+= bbi i

W cb  corresponds to the error relationship ibbi i
εε )1(* cb+= , and an identity 

mm× error covariance (inverse weight matrix) assigned to [ ]Tmεεε ..21=ε .)  
 
Using this W , the corresponding cost function approximates the desired: 
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Regardless of the weight W  used in the solution (Equation 43), it is also recommended 
that a priori constraints on the coefficients be included for solution stability: 
 

0=ia   with error variance 2
iaσ  , for 1,..,1 ni = ;     (48) 

0=ib   with error variance 2
ibσ  , for 2,..,1 ni = ; 

 
A nominal value for both 2

iaσ  and 2
ibσ  is 10101× .  Application of the constraints into the 

solution process is straightforward, simply modify WBBT  in Equation 43 as follows: 
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Because the solution (Equation 43) corresponds to a rational polynomial, zero checks 
must be performed for the denominator when solving for the coefficients and/or post-
solution.  A simple, sufficient condition for the lack of zeros is that the sum of the 
absolute value of all denominator coefficients for solution be less than 1.0, since the 
ground coordinate variables are normalized.  This condition can be sharpened by 
excluding all positive coefficients associated with even powers of all variables involved, 
e.g., 2X  or 222 ZYX , if present.  If this condition is not satisfied, then the denominator is 
checked for sign changes over a grid of ground points. If a zero (sign change) is detected, 
then the order of the rational polynomial must be changed, a numerator-only polynomial 
selected, or an interpolated ground-to-image grid selected for the ground-to-image 
function.  If the solution is successful in that it has no zeros, fit statistics are generated 
following the solution as is done in the Linear approach.  
 

5.1.1.3 Quasi-linear solution for coefficients (Method 2) 
 
The problem set-up is basically the same as in the Linear approach (section 5.1.1.1) in 
that a grid of redundant data is generated.  And again, as in the Quasi-linear-1 approach 
(section 5.1.1.2), the vector for solution is expanded ( 21 nnn += ) to include the 
coefficients from both numerator and denominator polynomials: 
 

..)1/(..)( 2
4321

2
54321 ++++++++++= XbZbYbXbXaZaYaXaau ,   (50) 

with a n×1 vector of coefficients for solution [ ] [ ] .....
21 11

T
nn

TT
b

T
a bbaa== ccc   

 
Assume an a priori estimate for c  is available, and represented as [ ]TT

b
T
a 000 ccc = .  A 

correction c∆  relative to the a priori estimate is solved for based on the following first-
order Taylor series expansion: 
 

[ ] ccbcb
c

cbcbcbcb ∆+
∂
∂

++≅+= )1/())1/(())1/((
00 bbaabbaabbaai iiiiii

u ,   (51) 

where 
[ ]..1 2

iiiia XZYX
i
=b , a 1× 1n  row vector 

[ ]..2
iiiib XZYX

i
=b , a 1× 2n  row vector 

 
Defining the scalar ))1/((

00 bbaaii ii
uu cbcb +−=∆ , and the 1×n partial derivative matrix 

[ ])1/( bbaai ii
cbcb

c
b +

∂
∂

= , evaluated at the operating point [ ]TT
b

T
a 000 ccc = , we have   

cb ∆=∆ iiu .  Considering iu∆ as a measurement im∆ , the basic measurement equation 
becomes: 
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 iiim ε+∆=∆ cb ,          (52) 
 
where iε is the associated error, the 1×( 1n  + 2n ), or equivalently 1×n, row vector 

[ ]
iiii bbaai ss bbb = , and scalars 

ias  and 
ibs  are equal to: 1)1(

0

−+= bba ii
s cb  and 

2)1)((
00

−+−= bbaab iii
s cbcb . 
 
Define the m×1 (delta) measurement vector [ ]Tmmm ∆∆=∆ ..1m  and m×n partial 

derivative matrix [ ]TT
m

T bbB ..1= .  The weighted least squares solution for the 
corrections c∆  to the a priori coefficients is the solution to the normal equations: 
 

mWBcWBB ∆=∆ TT )( , with equal weights  mxmIW = .    (53) 
 
Symbolically, the solution can be represented as: 
 

mcDc ∆=∆ )( 0 , where WBWBBcD TT 1
0 )()( −=      (54) 

 
The image measurements-to-coefficients mapping matrix D  is a function of the a priori 
coefficients, represented as )( 0cD , due to the inclusion of 0c  in the computation of ib . 
 
The solution c∆  minimizes the quadratic cost function:  

)()( cBmWcBm ∆−∆∆−∆ T .        (55) 
 
Once solved for, the corrections are added to the a priori coefficients to form a new set of 
a priori coefficients, i.e., ccc ∆+→ 00 , and the solution performed again at the new 
operating point.  When convergence has been reached, the solution process is finished 
with solution 0c ; otherwise, another iteration is performed.  The check for convergence is 
typically based on the relative change of the cost function (Equation 55) from one 
iteration to the next. 
 
Similar to the Quasi-linear-1 approach, it is also recommended that a priori constraints on 
the coefficient corrections c∆  for solution be included for stability.  The procedure is 
identical to that presented in Equations 48 and 49.  Also, as in the Quasi-linear-1 
approach, zero checks for the denominator should be performed and corrective action 
taken if detected, and fit statistics generated.  Finally, the initial a priori estimate for the 
coefficients 0c  should be reasonably accurate in order for the solution process to 
converge to the appropriate solution.  Quasi-linear-1 approach (section 5.1.1.2) may be 
implemented to provide this estimate (although the non-identity weights of Equation 46 
need not be implemented).  That is, the initial a priori estimate 0c  used in the Quasi-
linear-2 approach is set to the solution c  from the Quasi-linear-1 approach. 
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   5.1.1.4 Recommendations  
 
(Dowman and Dolloff, 2000) further describes the automatic solution process and the 
Linear approach (numerator-only polynomial), and include fit accuracy results.  In 
addition, (Tao and Hu, December 2001) essentially describe the same solution technique 
as presented in the Quasi-linear-1 approach for a rational polynomial (section 5.1.1.2), 
and include fit accuracy results.   
 
The Quasi-linear-1 approach has numerous features.  These features include: (1) the 
Linear approach (numerator-only polynomial) as a sub-case, and (2) no requirement for 
an a priori estimate of the coefficients for solution.  Also, the potential negative impact of 
the Quasi-linear-1 approach’s reliance on the measurement data ( mmDc )(= ) is 
mitigated due to the deterministic (noise free) nature of these measurements.  They are 
from the ground point-image point correspondence generated using the original sensor 
model and its image support data.  They are not subjected to the addition of any 
mensuration error, such as operator image measurement error. 
 
  5.1.2 Ground-to-image function grid 
 
Generation of the RSM ground-to-image grid is relatively straightforward.  The original 
sensor model’s adjustable ground-to-image function is used to generate the grid’s image 
point coordinate values.  For each Z  (height) plane, an evenly spaced horizontal grid is 
utilized, and the corresponding image coordinates computed.  The only other processing 
required is to determine the grid’s domain and step sizes.  The latter can be done either 
manually or automatically, based on the fit error associated with a candidate grid and the 
interpolation scheme used in ),( Rgrid x .  Fit error is relative to the original sensor 
model’s ground-to-image relationship that is provided in an evaluation grid.  Also, if 
required for fit accuracy and/or band-width limitations per image section, the image may 
be divided into sections with a grid per section - see similar processing for the ground-to-
image polynomial, section 5.1.1.  Note that a particularly efficient grid can be generated 
by selecting the RSM ground coordinate system as Rectangular, and identical to the local, 
rotated tangent plane coordinate system described in Section 3.1.3. 
 

5.2 Adjustable parameters and error covariance 
 
 5.2.1 Error covariance generation 

 
An optimal solution for a single or multiple ground (object) points was presented in 
Equation 21, and is representative of all optimal geopositioning and triangulation 
techniques.  The following presents the solution ( xδ ) using RSM and the corresponding 
solution ( #

xδ ) using the original sensor model: 
 

)()(])([ 0
1111

0
mmBCBΣBBBCBΣBCδ −+++= −−−− T

RRRM
TT

RRRM
T

xx   (56) 

)()(])([ #
0

1#1#1#1#
0

mmBCBΣBBBCBΣBCδ −+++= −−−− T
SSSM

TT
SSSM

T
xx  
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The above solution for ground point(s) xδ , based on RSM, was explicitly described in 
section 4.1.1.  (Actually xδ  is a correction to an a priori estimate, i.e., xδxx += 0 .)  The 
corresponding solution for #

xδ , based on the original sensor model, is completely 
analogous, with the appropriate substitution of original sensor model quantities for RSM 
quantities.  Specifically, substitute the original sensor model error covariance ( SC ) 
instead of the RSM error covariance ( RC ), the partial derivative of the image 
measurements with respect to the original sensor model adjustable parameters ( SB ) 
instead of the partial derivatives of the image measurements with respect to the RSM 
adjustable parameters ( RB ), the predicted image measurements based on the original 
sensor model ( #

0m ) instead of based on the RSM ( 0m ), and the partial derivative of the 
image measurements with respect to the ground point based on the original sensor model 
( #B ) instead of based on the RSM ( B ). 
 
For the RSM based solution, the RSM (adjustable) ground-to-image function is used to 
compute both the predicted measurements and the partial derivatives of the image 
measurements with respect to the ground point.  Because the RSM ground-to-image 
function represents the original sensor model’s ground-to-image function so well (e.g., 
rms fit error less than 0.05 pixels), both #

00 mm ≅  and #BB ≅ .  Thus, the only relevant 
difference in the formulas for xδ and #

xδ  are the use of T
RRR BCB  versus T

SSS BCB , i.e., the 
difference in the projection of sensor model (support data) error covariance to image 
space.  (Recall that RB is the partial derivative of image measurements with respect to Rδ , 

SB is the partial derivative of image measurements with respect to Sδ .)  Thus, the 
solution using RSM will closely match the solution using the original sensor model, 
when: 
 

T
SSS

T
RRR BCBBCB ≅          (57) 

 
Thus, RC  must be generated such that Equation 57 is satisfied.  Since RB  can not be 
inverted in general, and because Equation 57 is to hold at arbitrary ground point 
positions x  within the image footprints, the generation of RC  is accomplished as 
follows: 
 

T
R

*T
SS

*
S

*
RR ))()(( *++= BBCBBC , where the pseudo-inverse of *

RB  equals 
*T
R

*
R

*T
R

*
R BBBB 1)( −+ = .  Thus, we also have      (58) 

T*
R

*T
R

*
R

*T
SS

*
S

*T
R

*
R

*T
RR

−−= )()()( 1 BBBBCBBBBC . 
 
The superscript *  on the partial derivative matrices RB  and SB  indicate that the partial 
derivatives correspond to a common grid of ground point positions, varying both 
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horizontally and vertically, within the image footprints.  This is analogous to solving for 
a multi-ground point vector x  in Equation 56.  The footprints correspond to all 
(correlated) images whose support data errors are represented by the original sensor 
model’s SC .   
 
The number and dispersion (pattern) of the ground points in the grid is such that the 
number of rows in *

RB  is greater than or equal to the number of columns in *
RB , and that 

the subsequent matrix is full rank, required for the computation of its pseudo-inverse 
+*

RB .  The grid should also capture any variation in the partial derivatives SB , as well as 

RB , over the footprints.  In addition, the number of RSM adjustable parameters per 
image is typically less than or equal to the number of original sensor model adjustable 
parameters per image.  This not only facilitates *

RB  being full rank, but is a necessary 
condition for a positive definite RC .  Also, it is assumed that the a priori sensor support 
data errors are not so large as to render the partial derivative computations invalid. 
 
In general, Equation 58 correspond to multiple ( p ) images.  Assuming n  original sensor 
model adjustable parameters per image i  ( pi ,..,1= ) contained in 

iSδ , m  RSM 
adjustable parameters per image i  contained in 

iRδ , and q  ground points in image i ’s 
ground point grid, then SC  is a pn×pn multi-image original sensor model adjustable 
parameter error covariance matrix, and RC  is a pm×pm multi-image RSM adjustable 
parameter error covariance matrix.  In addition, define *

iSB  as the 2q×n matrix of partial 
derivatives of image i  measurements  with respect to 

iSδ  applicable over the image i  

ground point grid, and *
iRB  as the 2q×m matrix of partial derivatives of image i  

measurements  with respect to 
iRδ  applicable over the image i  ground point grid.  In 

particular, if iki  is the two-dimensional image measurement corresponding to ground 
point k  ( qk ≤ ) in image i ’s ground point grid, 

iSik δi ∂∂ /  corresponds to rows 12 −k  

and k2 of *
iSB  , and 

iRik δi ∂∂ /  to rows 12 −k  and k2  of *
iRB .  Also, the (full) rank of 

*
iRB  equals m , i.e., the number of rows is greater than or equal to the number of columns 

( mq ≥2 ), and the number of linearly independent  rows is equal to the number of RSM 
adjustable parameters ( m ).  In addition, if RC  is to be positive definite, the number of 
RSM adjustable parameters can not exceed the number of original sensor model 
adjustable parameters ( nm ≤ ) 
 
Correspondingly, components of Equation 58 are further detailed as follows: 
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T
jSiR ijij

ΦCΦC = , where 

  

)( ****1**
iiiiii SRS

T
RR

T
Ri BBBBBBΦ +− =≡  

For the direct approach to specification of the RSM error covariance (see section 3.2.1), 
the entire RC  is generated.  It is then supplied in the RSM support data for each image i  
within the correlated group of p  images.  For the indirect approach to specification of 
the RSM error covariance (see section 3.2.2), only the mapping matrix iΦ  is generated 
for an image i .  Both iΦ  and the data defining 

ijSC  are then provided in image i ’s RSM 

support data.  Note that, in support of both RC  and iΦ  generation, the required partial 
derivatives are generated using both the original sensor model and the RSM.  Also, both 

SC  and the data defining 
ijSC  are provided  by the original sensor model (and its image 

support data).  Finally, as a reminder, when in support of the direct approach to 
specification of the RSM error covariance, Equations 58 and 59 are actually applicable to 
a variable number and variable definition of both original adjustable parameters and 
RSM adjustable parameters across the p  images.  Specifically, Equation 59 is still 
applicable as written, however the dimensions of all the matrices are image dependent.  
For example, if image 1=i  has 1m  RSM adjustable parameters and image 2=i  has 2m , 

1Rδ  is 11 ×m , *
1RB  is 12 mq× , 

2Rδ  is 12 ×m , *
2RB  is 22 mq× , and 

12RC  is 21 mm × .  (The 
number of ground points q  in an image’s ground point grid may also vary with image, 
i.e., iqq → .) 
 
The solution of Equation 57 can also be generalized by solving for RC  such that the 
matrix norm difference of Equation 60 is minimized: 

    
F

*T
SS

*
S

*T
RR

*
R BCBBCB −        (60) 
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The particular norm is the Frobenius norm which is the square root of the sum of the 
matrix elements squared.  The solution to this minimization problem is provided by (Rao 
and Mitra, 1971): 
 

    ,)( T*
R

*T
SS

*
S

*
RR

++++= BBCBBC       (61) 
 
The superscript ++  is used to indicate the Moore-Penrose Generalized Inverse.  The 
Moore-Penrose Generalized Inverse of a matrix is based on the Singular Value 
Decomposition of the matrix. 
 
When *

RB  is full rank, ++*
RB  becomes the pseudo-inverse +*

RB , and Equation 61 is 
equivalent to Equation 58.  Thus, the solution for RC  of Equation 61 is only required for 
the pathological case when *

RB  is not full rank.  Note also that, when *
RB  is full rank, the 

solution of Equation 58 minimizes the Frobenius norm as well.  The remainder of this 
section assume that *

RB  is full rank, and that Equation 58, and more specifically, 
Equation 59, is applicable. 
 
  5.2.2 Adjustment vector selection 
 
For a given adjustment vector Rδ  (definition), RC  is computed such that its projection to 
image space closely approximates the projection of SC  to image space.  In particular, the 
Frobenius norm metric (Equation 60) is minimized.  In addition, this metric can be used 
to select an optimal Rδ .  More specifically, it can be used to select an optimal 

iRδ  

definition for each image i , i.e., which members of the RSM choice set R~δ  are 
applicable.  In particular, a Rδ  can be selected such that its corresponding minimum 
Frobenius norm value is also minimal compared to the minimum Frobenius norm values 
computed for other Rδ  candidates.  The candidates can be selected manually, or can be 
selected automatically using an algorithm which selects combinations of Rδ  components 
from a list of possible candidates. 
 
In addition, the selection process may be augmented with a positive definite constraint on 
the Rδ  and corresponding RC  candidates.  That is, for a candidate Rδ , the corresponding 

RC  must also be a positive definite matrix, which is required for triangulation 
applications.  (There is also an alternative generation technique for RC  that insures that 

RC  is positive definite regardless the Rδ  definition.  However, it is typically less 
accurate (larger Frobenius norm value) than the technique previously presented, and as 
such, is not presented here.)  Note that in Equation 59, since SC  is assumed positive 
definite, RC  will be positive definite if the total number of RSM adjustable parameters is 
less than or equal to the total number of original parameters and Ω  is full rank (see Horn 
and Johnson, 1994).  This occurs when, for each image i , the number of RSM adjustable 
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parameters is less than or equal to the number of original adjustable parameters ( nm ≤ ) 
and the mapping matrix iΦ  is full rank ( )m . 
 
In practice, Rδ  selection is typically done off-line and on a per sensor basis.  For a given 
sensor, the resulting selection becomes the default RSM adjustable parameters ( Rδ  
definition) for any image from that sensor.  Whenever a (multi-image) error covariance 
is generated later that involves one or more images from the sensor, the default RSM 
adjustable parameters are used in Equation 59 for those images.   
 
The normalized Frobenius norm is the actual metric used in the off-line selection process 
for ease of interpretation.  (Normalization also allows a different generation grid to be 
used for each candidate, if so desired.)  For each Rδ candidate, the metric is evaluated on 
a per image basis across a set of representative images (support data) for the sensor.  In 
particular, for each image i  in the set, the following is computed: 
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SS
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  BCBBCBBCB −      (62) 

 
Of course, 

iiRC  is computed prior to computation of the metric, using Equation 59.  The 
same ground point grid can be used for both 

iiRC generation and metric evaluation.  A  
355 ××  grid in ZYX −−  is typical.  The Rδ  candidate that minimizes the rms of the 

above metric taken over all images i  in the set and that also yields a positive definite 

iiRC  ( nm ≤  and iΦ  full rank) for each image i  is typically selected. 
 
A Rδ  (definition) that corresponds to an image-space adjustment (see section 3.1.3) 
works well for most sensors that have a field-of-view that is not excessively large and are 
not at a low altitude.  The actual number of members from the choice set is typically 
either 6 or 12 per image, and typically one or two less than the number of corresponding 
original sensor model adjustable parameters.  The actual adjustable parameter definitions 
corresponding to the 6 member set are { }yxyx vvvuuu δδδδδδ 00 , and for the 12 
member set { }yyxyxxyxyyxyxxyx vvvvvvuuuuuu δδδδδδδδδδδδ 00 .   
Sensors requiring a Rδ  (definition) that corresponds to a ground-space adjustment (see 
section 3.1.3), typically use a 6 member set, such as { }syx oo δδκδβδαδδ . 
 
In some situations, where the original sensor model adjustable parameters (errors) are 
highly correlated or their effect across a (small) image footprint very similar, 
significantly less RSM adjustable parameters may be selected than described above.  
 
 

5.3 Time and illumination models 
 
The time-of-image model and illumination model are generated in a straightforward 
manner using the original sensor model.  The illumination model also requires redundant, 
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equal weight fitting of the two angle polynomials to the illumination direction 
information. 

 
 
6.0 RSM development status and performance summary 
 
 6.1 Development status 
 
An RSM prototype has been built at BAE Systems and has undergone testing using both 
simulated data (Dowman and Dolloff, 2000) and actual data.  The majority of testing with 
actual data was sponsored by the National Imagery and Mapping Agency (NIMA).  In 
particular there were two studies, one for commercial satellite imagery and one for 
tactical imagery, both completed in 2001.   
 
The following summarizes current (November 2003) RSM development status.  The 
contents of the RSM support data groups have been defined.  Detailed draft formats for 
their inclusion as NITF Tagged Record Extensions (TRE’s) have been generated  and 
submitted to the NITF board for approval - see (NIMA 1997, 1999) for a general 
description of the NITF.  In addition, two RSM software modules are currently under 
development at BAE Systems.  The RSM Generator automatically generates the 
appropriate set of RSM image support data from a set of original sensor model image 
support data.  The RSM Exploiter automatically provides all sensor model functionality 
associated with a set of RSM image support data.  For example, for a given ground point, 
it provides the corresponding image point and all associated partial derivatives.  For a 
given image point and height, it provides the corresponding ground point.  It also supplies 
the multi-image direct error covariance and/or (fully assembled) multi-image indirect 
error covariance.  Both of these software modules include an Application Program 
Interface (API).  Use of the RSM Generator and/or RSM Exploiter mitigates RSM 
complexity. 
  
 6.2 Performance Summary 
 
Full RSM testing using the prototype and actual data has been performed using six 
different sensors to-date, including low altitude frame, space-borne pushbroom, and SAR.  
Full testing includes optimal multi-image, multi-ground point geopositioning, as well as 
triangulation.  Both require RSM’s full functionality – adjustable ground-to-image 
functions and multi-image error covariance.  During the testing, both the ground-to-
image polynomial and grid, both the image-space and ground-space adjustable 
parameters, and the direct error covariance method were all tested.  In addtion to full 
RSM testing, testing of the RSM ground-to-image polynomial and grid functions were 
tested for an additional five sensors.  Typically, not enough images were available for 
these additional sensors at the time in order to perform full RSM testing.  
 
For each of the eleven sensors tested, RSM ground-to-image fit accuracy was always 
0.05 pixels (rms) or better.  Testing of the polynomial was more extensive than that for 
the grid, and it was selected as the ground-to-image function for most sensors.  
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Polynomial fit accuracy ranged between 0.001 and 0.01 pixels (rms), with a maximum fit 
error typically three to four times larger than its rms counterpart.  A third order rational 
polynomial was typically selected.  When the RSM ground-to-image function was an 
interpolated grid, fit accuracy ranged between 0.001 and 0.05 pixels (rms), and was 
dependent on specified grid density, interpolation order, and coordinate system 
representation.  A grid size of 102020 ××  ( ZYX ,, ) or less and separable tri-quadratic 
interpolation were typical.  (Separable tri-cubic interpolation was not tested.)  All results 
are relative to a single image section (polynomial or grid) covering the entire image. 
 
Geopositioning results obtained during full RSM testing are most conveniently and 
usually most appropriately reported as a percentage of error propagation results.  For a 
given triangulation or geopositioning scenario (e.g., a 4 overlapping image, 5 ground 
point, simultaneous geopositioning solution), two optimal solutions were performed.  
One used the original sensor model and its image support data, and is termed the 
“original solution”.   The other used the RSM and its image support data, and is termed 
the “RSM solution”.  The RSM image support data was generated from the original 
sensor model and its image support data prior to both solutions.  All other factors 
affecting the two solutions were identical (e.g., image measurements).  The results of the 
two solutions were then compared, including both the best estimate of all ground point 
positions as well as estimates of their accuracy via the a posteriori solution error 
covariance, i.e., error propagation.  Note that the error propagation was summarized 
using CE and LE for both absolute and relative accuracy.  CE is 0.9p horizontal position 
error and LE is 0.9p vertical position error.  Both are computed from the a posteriori 
solution error covariance and assume a mean zero, Gaussian distribution of errors.  CE is 
the radius of a circle such that 90% of the probability is inside, and LE is the length of a 
linear segment such that 90% of the probability is within +/- the length.   
 
Differences between the original and RSM solutions were computed as an absolute value.  
These differences were then normalized by the appropriate error propagation results from 
the original solution.  If there were more than one ground point solved for 
simultaneously, the normalized differences were computed for each ground point (and 
ground point pair for relative differences) and then averaged.  Typical comparison results 
were on the order of 1% for all aspects of the solution.  For example, if for a given 
ground point, the horizontal error propagation (CE) from the original solution was 20 
meters, then the absolute value of the difference in the two solutions’ estimate of 
horizontal ground point position was approximately 0.01∗20 = 0.2 meter or less, and the 
absolute value of the difference in their error propagation (CE) was also approximately 
0.01∗20 = 0.2 meters or less.  If one considers the difference in the solutions’ horizontal 
position as an additional error source relative to the original solution and attributable to 
the RSM representation, it is negligible.  This is described in more detail below.  
 
  6.2.1 RSM representation error 
 
One of the charters for RSM is that the RSM solution closely match all aspects of the 
original solution.  This brings up the somewhat subjective question of “how close is close 
enough?”  If we attribute solution differences solely to RSM, the differences are “RSM 
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representation error” and can be considered an additional error source relative to the 
original solution.  For example, if for a given scenario the original solution’s CE is 20 
meters, and the RSM solution’s horizontal position differs from the original by 1 meter  
90% of the time, the expanded CE associated with the RSM solution would be 
approximately the root-sum-square of 20 meters and 1 meters, i.e., rss(20,1) = 20.03 
meters, a negligible increase.  The root-sum-square is applicable due to the addition of 
two uncorrelated errors.  The following further characterizes this change analytically, 
first for LE and then for CE.  
 
An analytic representation was derived that maps the percentage increase in LE as a 
function of the average normalized vertical position difference between the two solutions.  
It accounts for the 0.9p probability levels, the fact that normalized differences are 
absolute values of differences, and equates average value to probabilistic expectation.  
Figure 13 presents the results.  In particular, a 2.5% average normalized vertical position 
difference increases LE by 0.1%, and a 7.5% average normalized vertical position 
difference increases LE by 1.2%.  The mapping of average normalized horizontal 
position differences to a % increase in CE is even more favorable (smaller increase) than 
the corresponding mapping for LE.  Based on these results, normalized horizontal 
position and vertical position differences of 5% or less are considered negligible, and 
normalized differences of 15% or less are considered acceptable.  (This assumes that the 
original CE and LE are not excessively small to begin with.  For example, a 0.2 meter 
representation error is negligible in most applications, yet if the original CE were 1 meter, 
the normalized difference would be 20%.)  Although somewhat more subjective, the 
same tolerances described above for solution horizontal and vertical position differences, 
are assumed applicable to solution error propagation (CE and LE) differences as well. 
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Figure 13.  The effects of RSM representation error on vertical solution accuracy. 
  
 
  6.2.2 NIMA-sponsored RSM Commercial Imagery Study 
 
   6.2.2.1 SPOT Results 
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Table 5 presents typical results based on a set of 5 partially overlapping SPOT images.  
Image selection and footprint overlap was “by opportunity”, and resultant image 
geometry relatively poor.  A typical elevation angle was 80 degrees (90 degrees 
corresponding to nadir geometry), and a typical convergence angle between image pairs 
was 20 degrees.  Various geopositioning solution scenarios were addressed: monoscopic 
(rows 1-6 of Table 5), stereo (rows 7-12), and multi-image (rows 13-16).  An original 
solution and a corresponding RSM solution were performed for each case.     
 
Monoscopic solutions (with DEM) were performed with either 1 or 6 ground points 
solved for simultaneously.  Stereo solutions were performed with either 1 or 5 ground 
points solved for simultaneously.  A “multi-image” solution using all 5 SPOT images was 
performed with 14 ground points solved for simultaneously.  The SPOT image support 
data used was a priori (unadjusted) support data. 
 
Another set of geopositioning solutions were also performed based on SPOT adjusted 
image support data.  This adjusted image support data was the output of a previous 
original solution triangulation, which utilized all 5 images, 22 tie points, and 26 control 
points.  For a particular geopositioning solution scenario, the original solution used the 
SPOT adjusted image support data, and the RSM solution used RSM image support data 
generated from the SPOT adjusted image support data.  These solutions are indicated by 
“adj” in the support data column (“Sprt Data”) in Table 5.  Both the SPOT adjusted 
image support data and corresponding RSM image support data included a full error 
covariance relative to the appropriate adjustable parameters for all images.  There was 
significant correlation between adjustable parameters corresponding to the same image, 
as well as between adjustable parameters corresponding to different images 
 
Table 5 has one final entry corresponding to triangulation.  The previously discussed 
original solution triangulation was also performed as an RSM solution triangulation.  The 
latter adjusted the RSM support data that was previously generated from the SPOT a 
priori (unadjusted) support data.  The results of the original and RSM triangulation 
solutions were compared by comparing the solution position and error propagation results 
for all 22 tie points.  The triangulation comparison results are contained in the last two 
rows of Table 5. 
 
Note that all results in Table 5 are normalized as discussed previously.  (When based on 
unadjusted support data, the original solution’s CE and LE were on the order of hundreds 
of meters due to poor geometry and large support data error covariance.)  Also, both 
absolute and relative statistics are presented in the table, indicated by “abs” and “rel”, 
respectively,  in the “statistics” column.  Absolute statistics refer to a ground point’s 
horizontal position solution and vertical position solution and their corresponding error 
propagation (accuracy estimates) CE and LE, respectively.  Relative statistics refer to the 
relative results between a pair of ground points solved for simultaneously.  (A small 
relative position error or corresponding accuracy estimate would indicate highly, 
positively correlated solution position errors between the two ground points that nearly 
cancel out.)  Note also that table results are actually in terms of maximum normalized 
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difference between the original and RSM solutions, presented to the nearest one-tenth of 
one percent.    For a given geopositioning or triangulation solution, the absolute statistics 
presented refer to the largest normalized difference among all points (tie points if a 
triangulation) solved for.  Relative statistics refer to the largest normalized difference 
among all possible point pairs involving ground points in the solution.  Thus, results are 
some what conservative relative to the use of average normalized differences. 
 
An example of how to interpret Table 5 is as follows.  Rows 9-10 (of the rows containing 
numeric or “n/a” data) correspond to a stereo (two-image) geopositioning solution for 5 
ground points using unadjusted support data.  Absolute statistics are presented in row 9.  
There is a 0.2% maximum normalized difference in the original and RSM solutions’ 
horizontal position estimate, a 0.4% maximum normalized difference in the original and 
RSM solutions’ vertical position estimate, a 0.1% maximum normalized difference in the 
original and RSM solutions’ horizontal error propagation (CE), and a 0.2% maximum 
normalized difference in the original and RSM solutions’ vertical error propagation (LE).  
Row 10 presents corresponding relative statistics.  As detailed in these rows and the 
remainder of Table 5, differences between the RSM and original solutions are negligible 
for all scenarios. 
 
 
Case Sprt Data # pts statistics % norm 

hor diff 
% norm 
ver diff 

% norm 
CE diff 

% norm 
LE diff 

    
Geopos    

    
mono   1  abs 0 0 0 0 

   rel n/a n/a n/a n/a 
mono   6  abs 0 0 0.1 0.1 

   rel 0 0 0.1 0.1 
mono    adj 6 abs 0.1 0 0.1 0 

   rel 0 0 0.1 0 
stereo  1 abs 0 0 0 0 
   rel n/a n/a n/a n/a 
stereo   5  abs 0.2 0.4 0.1 0.2 

   rel 0.3 0.1 0.9 0.7 
stereo  adj 5  abs 0.2 0.2 0.2 0.2 

   rel 0.2 0.2 0.2 0.1 
multi img  14  abs 0.1 0.3 0.1 0.1 

   rel 0.4 0.4 0.5 0.6 
multi img adj 14  abs  0.5 0.4 0.2 0.2 

   rel 0.6 0.6 0.2 0.2 
    

Triang    
    

baseline  22 tp 26 c abs 1.5 2.3             0.2 0.2 
   rel 2.0 2.7 0.3 0.3 
    

  
 

Table 5.   SPOT RSM - original solution maximum normalized differences (%). 
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The SPOT original sensor model included seven adjustable parameters per image, three 
for position, three for attitude, and one for focal length.  Corresponding a priori accuracy 
(one sigma) was appropriately large: 300 meters for all position components, 0.0009 
radians for all attitude (orientation) components, and 0.0005 meters for focal length.  The 
images were approximately 6k×6k in size with a 10 meter ground sample distance.  A 
priori support data errors were uncorrelated between images.  There were a total of 6 
RSM image-space adjustable parameters per image (identical to those specified in 
Equation 12).  Also, the RSM ground-to-image function was a third order rational 
polynomial that covered the entire image.  No denominator zeros were present in any 
SPOT case, nor in any other cases involving the six sensors fully tested to-date.   
 
   6.2.2.2 Sensitivity to adjustment magnitude 
 
The SPOT a priori uncertainty associated with the above geopositioning and triangulation 
scenarios was appropriately large.  However, when artificially set to very large 
uncertainty (corresponding position component a priori accuracy of 3000 meters, one 
sigma), normalized differences are approximately 15 % for some aspects of the 
triangulation solution comparison due to the larger support data adjustment.  This effect 
corresponds to an operational scenario where the RSM a priori image support data is 
being generated by an up-stream process using the original sensor model’s a priori image 
support data that reflects very large uncertainty.  The resultant RSM a priori image 
support data and the original sensor model’s a priori image support data are then  
adjusted later by a down-stream user via their corresponding triangulation solutions.  
(The original triangulation is performed hypothetically for comparison purposes only.)  
Consequently, the operating point that was used by the up-stream RSM generation 
process is modified significantly by the subsequent adjustment of both the original and 
RSM image support data.  However, the RSM a priori error covariance is not regenerated 
using the new operating point.  
 
Specifically, the operating point affects the partial derivatives ( SB  and RB ) used in the 
generation of the RSM error covariance RC  from the original a priori error covariance 

SC  (see section 5.2, and Equations 57-59).  RC  is generated from SC  at an initial 
operating point corresponding to the a priori support data, and then both are utilized later 
as the a priori error covariance in the first and subsequent iterations of their respective 
triangulation solution processes (see section 4.1.2).  Following the first iteration, both the 
original and RSM support data are adjusted and their corresponding partial derivatives 
( SB and RB ) change.  However, RC  is not regenerated from SC  at this new operating 
point; hence, the two a priori covariances become somewhat “misaligned” for the start of 
the second (and subsequent) iterations.  The degree of misalignment is dictated by the 
amount of support data adjustment. 
 
Experimental results to-date indicate that when partial derivatives start to change by 
approximately 1 % due to changes in the operating point, RSM triangulation solutions 
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can start to disagree with their original triangulation solution counterparts by a non-
negligible and possibly unacceptable amount.  For a space-borne sensor, a 1% change 
occurs when adjustments to its support data are equivalent to a ground space adjustment 
on the order of one thousand meters.  For an air-borne sensor, on the order of one 
hundred meters.  Of course these ground space adjustment values are approximate, and 
are dependent on the specific imaging geometry.  Also, the sensitivity of the RSM 
triangulation solution to changes in the partial derivatives diminishes with improved 
imaging geometry, ground point distribution, and control point accuracy, i.e., as the 
solution scenario becomes more stable.  Thus, the 1% number is conservative. 
 
   6.2.2.3 SPOT-IKONOS Results 
 
Another experiment was performed based on a different set of 4 SPOT images with 
reasonable image geometry.  A typical elevation angle was 65 degrees, and a typical 
convergence angle between image pairs was 40 degrees.  In addition, for this case, the 
support data was modified to simulate Ikonos level support data uncertainty.  That is, the 
SPOT original sensor model was utilized, but the support data, including a priori 
accuracy (one sigma), were modified to be consistent with Ikonos.  This was necessary 
since the original sensor model for Ikonos was unavailable.  Support data a priori 
accuracy was appreciably better than for SPOT: 3 meters for all position components, 
0.00001 radians for all attitude components, and 0.00005 meters for focal length.  The 
position and attitude accuracies were based on those detailed in (Zhou and Li, 2000).  
However, focal length (interior orientation) accuracy was not provided, so it was set to 
one-tenth the value used for SPOT.  The form of the RSM adjustable ground-to-image 
function remained the same as for the SPOT experiment. 
  
In order to simulate Ikonos support data uncertainty, a relative orientation involving all 
four images was first performed using the original sensor model, and then the resultant, 
adjusted image support data was perturbed using random numbers consistent with Ikonos 
a priori accuracy and uncorrelated support data errors.  Synthetic control points were also 
generated consistent with the relative orientation and perturbed with random numbers 
consistent with absolute accuracies of CE=4 meters and LE=3 meters.  These errors were 
generated independently between points.  Finally, a 1 meter ground sample distance (and 
corresponding 60k×60k image size) was emulated by artificially setting the a priori 
mensuration uncertainty for the measured image coordinates associated with all ground 
points from a 1 pixel error down to 0.1 pixel error (one sigma).  Although, this reduction 
represents a mis-modeling, it has no appreciable effect on the study as we are comparing 
two different solutions, both with the same exact mis-modeling.  
 
Table 6 presents the results for this “SPOT-IKONOS” sensor.  Note that in this case, 
results are presented un-normalized, i.e., average absolute differences between the two 
solutions, and expressed in meters, rounded to the nearest one-tenth.  This was done for 
ease of interpretation and because some of the original solutions yielded very small CE 
and LE error propagation results.  Table 7 presents the original solution error propagation 
results, averaged over all ground points in the original solution or over all ground point 
pairs in the original solution, as appropriate.  Notice the improved geopositioning 
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accuracy when more images are involved in the solution, and the improved accuracy 
when triangulated (adjusted) images are involved in the solution. 
 
 
Case Sprt Data # pts statistics   hor diff   ver diff   CE diff   LE diff 

     
Geopos     

     
mono   8  abs                0 0 0 0 

   rel 0 0 0 0 
stereo   8  abs 0.1 0.1 0 0 

   rel 0 0 0 0 
multi img  8  abs 0 0.1 0 0 

   rel 0 0 0 0 
mono adj 8  abs 0 0 0 0 

   rel 0 0 0 0 
stereo adj 8  abs 0 0 0 0 

   rel 0 0 0 0 
multi img adj 8  abs                 0 0 0 0 

   rel 0 0 0 0 
     

Triang     
     

baseline  23 tp 24 c abs 0.1 0.1 0 0 
   rel 0.1 0.1 0 0 
     

  
 

Table 6.   SPOT-IKONOS RSM - original sensor model average differences (meters). 
 
 
Case Sprt Data # pts abs CE abs LE rel CE rel LE 

    
Geopos    

    
mono  8  21.7 38.7 15.2 54.7 
stereo   8  14.1 25.2 2.4 5.0 
multi img  8  9.8 17.5 1.7 3.3 

    
mono  adj 8  10.7 38.1 15.0 53.9 
stereo  adj 8  2.0 3.7 2.3 4.8 
multi img adj 8             1.6 2.6 1.7 3.2 

    
Triang    

    
baseline  23 tp 24 c 1.9 3.3 2.4 4.5 

    
  

Table 7.   SPOT-IKONOS original sensor model average error propagation results 
(meters). 
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As can be seen by Table 6, “SPOT-IKONOS” comparison results are even better than the 
comparison results for SPOT.  In general, the less uncertain the original sensor model 
image support data, the smaller the differences between the original and RSM solutions, 
particularly when multiple images are utilized and multiple ground points are solved for 
simultaneously.  In other words, the more challenging cases occur when the original 
solution support data is inaccurate, and there are multiple images and multiple ground 
points in the solution.  
 
Also, as mentioned previously, both the SPOT and SPOT-IKONOS cases involved seven 
adjustable parameters per image for the original sensor model, and six adjustable 
parameters per image for the RSM.  Similar experiments were performed using 13 
adjustable parameters per image for the original sensor model (velocity and attitude rates 
were added), and 12 image space adjustable parameters per image for the RSM (identical 
to those specified in Equation 10).  Comparison results were similar to those of the initial 
experiments.   
 
In summary, geopositioning solutions based on RSM are virtually identical to solutions 
based on the original sensor model.  Triangulation solutions are also virtually identical 
when support data adjustments are of reasonable magnitude. 
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